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Summary. In 1896 Tresse gave a complete description of relative differential invari-
ants for the pseudogroup action of point transformations on the 2nd order ODEs.
The purpose of this paper is to review, in light of modern geometric approach to
PDEs, this classification and also discuss the role of absolute invariants and the
equivalence problem.1

Introduction

Second order scalar ordinary differential equations have been the classical tar-
get of investigations and source of inspiration for complicated physical models.
Under contact transformations all these equations are locally equivalent, but
to find such a transformation for a pair of ODEs is the same hard problem
as to find a general solution, which as we know from Ricatti equations is not
always possible.

Most integration methods for second order ODEs are related to another
pseudogroup action – point transformations, which do not act transitively on
the space of all such equations. All linear 2nd order ODEs are point equivalent.

S. Lie noticed that ODEs linearizable via point transformations have neces-
sarily cubic nonlinearity in the first derivatives and described a general test to
construct this linearization map [Lie2]. Later R. Liouville found precise condi-
tions for linearization [Lio]. But it was A. Tresse who first wrote the complete
set of differential invariants for general 2nd order ODEs.

The paper [Tr2] is a milestone in the geometric theory of differential equa-
tions, but mostly one result (linearization of S.Lie-R.Liouville-A.Tresse) from
the manuscript is used nowadays. In this note we would like to revise the
Tresse classification in modern terminology and provide some alternative for-
1 MSC numbers: 34C14, 58H05; 58A20, 35A30
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mulations and proofs. We make relation to the equivalence problem more
precise and also compare this approach with E.Cartan’s equivalence method.

This classification can illustrate the finite representation theorem for
differential invariants algebra, also known as Lie-Tresse theorem. The lat-
ter in the ascending degree of generality was proven in different sources
[Lie1, Tr1, Ov, Ku, Ol, KL1]. In particular, the latter reference contains the
full generality statement, when the pseudogroup acts on a system of differ-
ential equations E ⊂ J l(π) (under regularity assumption, see also [SS]). We
refer to it for details and further references and we also cite [KLV, KL2] as a
source of basic notations, methods and results.

The structure of the paper is the following. In the first section we provide
a short introduction to scalar differential invariants of a pseudogroup action
and recall what the algebra of relative differential invariants is. In Section 2 we
review the results of Tresse, confirming his formulae with independent com-
puter calculation. In Section 3 we complete Tresse’s paper by describing the
algebra of absolute invariants and proving the equivalence theorem (in [Tr2]
this was formulated via relative invariants, which makes unnecessary compli-
cations with homogeneity, and only necessity of the criterion was explained).
In Section 4 we discuss the non-generic 2nd order equations, which contain in
particular linearizable ODEs. Section 5 is devoted to discussion of symmetric
ODEs.

Finally in Appendix (written jointly with V.Lychagin) we provide another
approach to the equivalence problem, based on a reduction of an infinite-
dimensional pseudogroup action to a Lie group action.

1 Scalar differential invariants

We refer to the basics of pseudogroup actions to [Ku, KL2], but recall the rele-
vant theory about differential invariants (see also [Tr1, Ol]). We’ll be concerned
with the infinite Lie pseudogroup G = Diff loc(R2,R2) with the corresponding
Lie algebras sheaf (LAS) g = Dloc(R2) of vector fields.

The action of G has the natural lift to an action on the space J∞π for
an appropriate2 vector bundle π, provided we specify a Lie algebras homo-
morphism g → Dloc(J0π). Then we can restrict to the action of formal LAS
J∞(R2,R2).

A function I ∈ C∞(J∞π) (this means that I is a function on a finite jet
space Jkπ for some k > 1) is called a (scalar absolute) differential invariant if
it is constant along the orbits of the lift of the action of G to Jkπ.

For connected groups G we have an equivalent formulation: I is an (ab-
solute) differential invariant if the Lie derivative vanishes LX̂(I) = 0 for all
vector fields X from the lifted action of the Lie algebra g = Lie(G).

2 In this paper π = M × R is a trivial 1-dimensional bundle over M ' R3, so
Jkπ = JkM .
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Note that often functions I are defined only locally near families of orbits.
Alternatively we should allow I to have meromorphic behavior over smooth
functions (but we’ll be writing though about local functions in what follows,
which is a kind of micro-locality, i.e. locality in finite jet-spaces).

The space I = {I} forms an algebra with respect to usual algebraic oper-
ations of linear combinations over R and multiplication and also the compo-
sition I1, . . . , Is 7→ I = F (I1, . . . , Is) for any F ∈ C∞loc(Rs,R), s = 1, 2, . . . any
finite number. However even with these operations the algebra I is usually
not locally finitely generated. Indeed, the subalgebras Ik ⊂ I of order k dif-
ferential invariants are finitely generated on non-singular strata with respect
to the above operations, but their injective limit I is not.

However finite-dimensionality is restored if we add invariant derivatives,
i.e. C -vector fields ϑ ∈ C∞(J∞π)⊗C∞(M)D(M) commuting with the G-action
on the bundle π. These operators map differential invariants to differential
invariants ϑ : Ik → Ik+1.

Lie-Tresse theorem claims that the algebra of differential invariants I is
finitely generated with respect to algebraic-functional operations and invariant
derivatives.

A helpful tool on the practical way to calculate algebra I of invariants are
relative invariants, because they often occur on the lower jet-level than abso-
lute invariants. A function F ∈ C∞(J∞π) is called a relative scalar differential
invariant if the action of pseudogroup G writes

g∗F = µ(g) · F

for a certain weight, which is a smooth function µ : G → C∞(J∞π), satisfying
the axioms of multiplier representation

µ(g · h) = h∗µ(g) · µ(h), µ(e) = 1.

The corresponding infinitesimal analog for an action of LAS g is given via
a smooth map (the multiplier representation is denoted by the same letter)
µ : g → D(J∞π), which satisfies the relations

µ[X,Y ] = LX̂(µY )− LŶ (µX), ∀X,Y ∈ g,

Then a relative scalar invariant is a function F ∈ C∞(J∞π) such that LX̂I =
µX · I. In other words (in both cases) the equation F = 0 is invariant under
the action.

Let M = {µX} be the space of admissible weights3. Denote by Rµ the
space of scalar relative differential invariants of weight µ. Then

R =
⋃

µ∈M

Rµ

3 It is given via a certain cohomology theory, which will be considered elsewhere.
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is a M-graded module over the algebra of absolute scalar differential invariants
I = R0 corresponding to the weight µ = 0 for the LAS action (µ = 1 for the
pseudogroup action).

The space M of weights (multipliers) is always a group, but we can trans-
form it into a k-vector space (k = Q, R or C) by taking tensor product M⊗k
and considering (sometimes formal) combinations (I1)α1 · · · (Is)αs . Then we
have:

Rµ · Rµ̄ ⊂ Rµ+µ̄, (Rµ)α ⊂ Rα·µ.

2 Tresse classification revisited

We start by re-phrasing the main results of Tresse classification4.

2.1 Relative differential invariants of 2nd order ODEs

The point transformation LAS Dloc(J0R), with J0R(x) = R2(x, y), equals
g = {ξ0 = a∂x+b∂y : a = a(x, y), b = b(x, y)} and it prolongs to the subalgebra

g2 = {ξ = a∂x + b∂y + A∂p + B∂u} ⊂ Dloc(J2R), J2R = R4(x, y, p, u),

A = bx − (ax − by)p− ayp2, B = B0 + uB1,

B0 = bxx − (ax − 2by)xp− (2ax − by)yp2 − ayyp3, B1 = −(2ax − by)− 3ayp

where we denote p = y′, u = y′′ the jet coordinates.
Using the notations Dx = ∂x + p ∂y, ϕ = (dy − p dx)(a∂x + b∂y) = b− p a

(we’ll see soon these show up naturally), these expressions can be rewritten
as

A = Dx(ϕ), B0 = D2
x(ϕ), B1 = ∂y(ϕ)− 2Dx(a)

Thus the LAS h = g2 ⊂ Dloc(J0R3(x, y, p)) being given we represent a
second order ODE as a surface u = f(x, y, p) in J0R3(x, y, p) = R4(x, y, p, u)
and kth order differential invariants of this ODE are invariant functions I ∈
C∞loc(J

kR3) of the prolongation

hk = {ξ̂ = aDx + bDy + ADp +
∑

|σ|≤k

D(k)
σ (f) ∂uσ} ⊂ D(JkR3),

f = B0 + B1u− a ux − b uy −Aup : ξ̂(I) = 0.

Here D(k)
σ = Dσ|Jk with Dσ = Dl

xDm
y Dn

p for σ = (l · 1x + m · 1y + n · 1p), so
that
4 We use different notations p instead of z, u instead of ω etc, but this is not crucial.
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Dσ(f) = Dσ(B0) +
∑ |τ |!

τ !

(
Dτ (B1)uσ−τ −Dτ (a)uσ−τ+1x

−Dτ (b)uσ−τ+1y
−Dτ (A)uσ−τ+1p

)
.

In the above formula we used the usual partial derivatives ∂x etc in the total
derivative operators Dσ etc. All these operators commute.

It is more convenient, following Tresse, to use the operator Dx = ∂x +p ∂y

on the base instead and to form the corresponding total derivative D̂x =
Dx + pDy. These operators will no longer commute and we need a better
notation for the corresponding non-holonomic partial derivatives.

Denote uk
lm = D̂l

xDm
y Dk

p(u), which equals ulmk mod (lower order terms).
The first relative invariants calculated by Tresse have order 4 and are:

I = u4, H =

u2
20−4u1

11+6u02+u(2u3
10−3u2

01)−u1(u2
10−4u1

01)+u3u10−3u2u01+u·u·u4.

In this case the weights form two-dimensional lattice and the relative invari-
ants are

Rr,s = {ψ ∈ C∞(J∞R3) : ξ̂(ψ) = −(rDx(a) + s∂y(ϕ))ψ}

Note that ξ̂(ψ) = −(w Cw
ξ + q Cq

ξ )ψ for w = r, q = s− r (weight and quality
in Tresse terminology). Here the coefficients can be expressed as operators of
ξ0 = a∂x + b∂y and ξ1 = a∂x + b∂y + A∂p:

Cw
ξ = ax + by = divω0(ξ0) and Cq

ξ = ∂y(ϕ) = 1
2 divΩ0(ξ1)

with ω0 = dx∧dy the volume form on J0R and Ω0 = −ω∧dω on J1R, where
ω = dy − p dx is the standard contact form of J1R. These two form the base
of all weights5.

There are relative invariant differentiations6 (differential parameters in the
classical language):

∆p = Dp + (r − s)
u5

5u4
: Rr,s →Rr−1,s+1,

∆x = D̂x + u ∆p +
(
(3r + 2s)

(
u1 +

3uu5

5u4

)
+ (2r + s)

u4
10

u4

)
: Rr,s → Rr+1,s,

∆y = Dy +
u5

5u4
∆x +

(
2 u1 +

u4
10 + uu5

u4

)
∆p +

(
(r + 2s)

u4
01

4u4
+

+(3r + 2s)
(u2

8
+

3
20

u5(u4
10 + u u5 + 2u1u4)

u4u4

))
: Rr,s →Rr,s+1.

5 This is a result from a joint discussion with V.Lychagin. It is important since in
Tresse [Tr2] this is an ad-hoc result, based on the straightforward calculations,
but not fully justified. More details will appear in a separate publication.

6 Note that they are differential operators of the 1st order, obtained from the base
derivations via an invariant connection.
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Theorem 1. [Tr2] The space of relative differential invariants R is generated
by the invariant H and differentiations ∆x,∆y,∆p on the generic stratum.

Notice that the latter two 1st order C -differential operators have the form:

∆x = Dx + pDy + uDp + r
(
3u1 + 2

uu5 + u4
10

u4

)
+ s

(
2u1 +

uu5 + u4
10

u4

)
,

∆y =
u5

5u4
Dx +

(
1 + p

u5

5u4

)
Dy +

(
2 u1 +

5u4
10 + 6uu5

u4

)
Dp + r

(3u2

8
+

u4
01

4u4

+
19u1u5

10u4
+

21(u u5 + u4
01)u

5

20 u4 · u4

)
+ s

(u2

4
+

u4
01

2u4
+

3u1u5

5u4
+

3(uu5 + u4
01)u

5

10 u4 · u4

)
,

and so ∆x,∆y,∆p are linearly independent everywhere outside I = 0.

2.2 Specifications

Several remarks are noteworthy in relation with the theorem:
1. The number of basic relative differential invariants of pure order k is

given in the following table

k : 0 1 2 3 4 5 6 7 8 . . . k . . .
# : 0 0 0 0 2 3 11 17 24 . . . 1

2 (k2 − k − 8)

The generators in order 4 are I ∈ R−2,3 and H ∈ R2,1; in order 5 H10 =
∆x(H) ∈ R3,1, H01 = ∆y(H) ∈ R2,2 and K = ∆p(H) ∈ R1,2; in order 6 are7

(H20,H11,H02) ∈ R4,1 ⊕ R3,2 ⊕ R2,3, (K10,K01) ∈ R2,2 ⊕ R1,3 and Ωl
ij =

ul
ij +(lower terms for certain order on monomials) ∈ Ri+2−l,j+l−1, deg Ωl

ij =
i + j + l = 6, l > 3:

order k basic relative differential invariants
4 I, H
5 H10, H01, K
6 H20, H11, H02, K10, K01, Ω4

20, Ω4
11, Ω4

02, Ω5
10, Ω5

01, Ω6

Thus in ascending order k, we must add the generators I, H and then Ω6−i−j
ij ,

i + j ≤ 2 (one encounters the relations ∆x(I) = ∆y(I) = ∆p(I) = 0). Invari-
ants of order k > 6 are obtained via invariant derivations from the lower
order.

2. The theorem as formulated gives only generators. The relations (differ-
ential syzygies) are the following (also contained in [Tr2]):

7 We let Hij = ∆i
x∆j

yH and Kij = ∆i
x∆j

yK, though in [Tr2] there is a difference
between ∆xK and K10, ∆yK and K01. Since this only involves a linear transfor-
mation, this is possible.
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[∆p,∆x] = ∆y +
3(3r + 2s)

5
Ω5

10

I

[∆p, ∆y] =
Ω6

5I
∆x +

Ω5
10

I
∆p − 3(3r + 2s)

20
Ω5

01

I

[∆x, ∆y] =
Ω5

10

5I
∆x +

Ω4
20

I
∆p − 3(3r + 2s)

4
Ω4

11

I

together with the following relations for coefficients-invariants (the first of
which is just the application of the above commutator relation)

Ω5
10 =

5I

24H
([∆p,∆x]H −∆yH), Ω5

01 =
4
9
(∆pΩ

5
10 −∆xΩ6),

Ω4
20 = ∆2

pH − Ω6

5I
H, Ω4

11 =
4
3
(∆pΩ

4
20 −∆xΩ5

10).

It is important that the relation for the last additional invariant of order 6

Ω4
02 =

4
5
(∆yΩ5

10 −∆xΩ5
01 +

5Ω4
20Ω

6 + Ω5
10Ω

5
01

5I
)

can be considered as definition, while first additional invariant8 of order 6

Ω6 = u6 − 6
5

u5 · u5

u4

can be obtained from a higher relation via application of the relation for
[∆p,∆y] to H and K.

Thus we see that involving syzygy of higher order invariants (prolongation-
projection) we can restore the invariants I, Ωk

ij from H and invariant differ-
entiations ∆j , as the theorem claims.

3. The theorem specifies the relative invariants only on the generic stra-
tum. If we take the minimal number of generators (H, ∆x,∆y,∆p), then this
stratum is specified by a number of non-degeneracy conditions of high order.

However if we take more generators (I, H,Ω6,∆x, ∆y,∆p), or the collec-
tion of basic invariants (I, H,Ω6, Ω5

10, . . . , Ω
4
02, ∆x,∆y,∆p) for the complete-

ness in ascending order k, then this condition is very easy: just I 6= 0.
Notice that the condition I = 0 is important, since it describes the singular

stratum (see however §1.4.2 where this case is handled).

3 Classification of 2nd order ODEs

While a complete classification of relative differential invariants for 2nd order
scalar ODEs was achieved by Tresse, absolute invariants are not described in
[Tr2]. They however can be easily deduced.

8 This invariant is important with another approach, see Appendix.
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3.1 Dimensional count

Let us at first count the number of absolute invariants on a generic stratum9.
This number equals the codimension of a generic orbit in the corresponding
jet-space.

Denote by Ok the orbit through a generic point in JkR3(x, y, p) of the
pseudogroup of point transformations. Tangent to it is determined by the
corresponding LAS and so we can calculate codimension of the orbit. Indeed,
denoting by Stk the stabilizer of the LAS hk at the origin we get

dimOk = codimStk .

To calculate the stabilizer we should adjust the normal form of the equation
at the origin via a point transformation. This can be done via a projective
configuration (Desargues-type) theorem of [A] (§1.6): any 2nd order ODE
y′′ = u(x, y, p), p = y′, can be transformed near a given point to

y′′ = α(x)y2 + o(|y|3 + |p|3).

Denote by m the maximal ideal at the given point (so mk is the space of
functions vanishing to order k). Then we can suppose that at a given point

u, ux, uy, up, uxx, uxy, uxp, uyp, upp ∈ m.

Therefore the stabilizer Stk is given by the union of the following conditions
on the coefficients of ξ̂ ∈ hk (equivalently on coefficients of ξ0 ∈ g)

a ∈ mk−2, ayy ∈ mk−3, b ∈ mk−1, bxx ∈ mk,

ax ∈ mk−2, (2ax − by)y ∈ mk−2, (ax − 2by)x ∈ mk−1.

Thus the Taylor expansion of a = a(x, y) can contain only the following
monomials

{xiyj : i + j ≤ k − 1}, {xiyk−i : i > 1}, {xiyk+1−i : i > 2}

and the allowed monomials for b = b(x, y) are

{xiyj : i + j ≤ k}, {xiyk+1−i : i ≥ 1}, {xiyk+2−i : i ≥ 2}.

This yields that codim(Stk) equals:

dim
(
C[x, y]2/ Stk

)
=

k(k + 1)
2

+2(k−1)+
(k + 1)(k + 2)

2
+2(k+1) = k2+6k+1

and so the number ıık of the basic differential invariants of order ≤ k is equal
to
9 This count is independent of Tresse argumentation, and so together with footnote5

it provides a rigorous proof of the table in §1.2.2.
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ıık = codimOk = dim JkR3 − dimOk

= 3 +
(k + 1)(k + 2)(k + 3)

6
− (k2 + 6k + 1) =

k3 − 25k + 18
6

.

As this formula indicates for k ≤ 4 the generic orbit is open, so that such
stratum has no absolute invariants (however for k = 4 there are singular
orbits, so that the relative invariants I, H appear).

In order k = 5 the formula yields ıı5 = 3 differential invariants. For k > 5
we deduce the number of pure order k basic differential invariants:

ıık − ıık−1 =
k(k − 1)

2
− 4.

3.2 Absolute differential invariants

There are two ways of adjusting a basis on the lattice M of weights via relative
invariants. As follows from specification for Z2-lattice of weights from §1.2.2,
the basic invariants are

J1 = I−1/8H3/8 ∈ R1,0, J2 = I1/4H1/4 ∈ R0,1.

Another choice, which allow to avoid branching but increase the order, is

J̃1 =
H10

H
∈ R1,0, J̃2 =

H01

H
∈ R0,1.

Then (choosing Ji or J̃i) we get isomorphism for k > 4:

Rr,s
k /Rr,s

k−1 ' Ik/Ik−1, F 7→ F/(Jr
1Js

2 ).

Thus with any choice the list of basic differential invariants in order 5 is

H̄10 = H10/(J3
1J2), H̄01 = H01/(J2

1J2
2 ), K̄ = K/(J1J

2
2 )

and in pure order 6 is

H̄20 = H20/(J4
1J2), H̄11 = H11/(J3

1J2
2 ), H̄02 = H02/(J2

1J3
2 ), K̄10 = K10/(J2

1J2
2 ),

K̄01 = K01/(J1J
3
2 ), Ω̄4

20 = Ω4
20/(J3

2 ), Ω̄4
11 = Ω4

11/(J−1
1 J4

2 ), Ω̄4
02 = Ω4

02/(J−2
1 J5

2 ),

Ω̄5
10 = Ω5

10/(J−2
1 J4

2 ), Ω̄5
01 = Ω5

01/(J−3
1 J5

2 ), Ω̄6 = Ω6/(J−4
1 J5

2 ).

Higher order differential invariants can be obtained in a similar way from the
basic relative invariants, but alternatively we can adjust invariant derivations
by letting ∇j = J

ρj

1 J
σj

2 ·∆j |r=s=0 with a proper choice of the weights ρj , σj .
Namely we let

∇p =
J1

J2
Dp, ∇x =

1
J1

(D̂x + uDp

)
,

∇y =
1
J2

(
Dy +

u5

5u4
D̂x +

(u4
10

u4
+

6uu5

5u4
+ 2u1

)Dp

)
.
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These form a basis of invariant derivatives over I and we have:

[∇p,∇x] = − 1
8H̄10∇p − 3

8K̄∇x +∇y,

[∇p,∇y] = (Ω̄5
10 − 1

8H̄01)∇p + 1
5 Ω̄6∇x − 1

4K̄∇y,

[∇x,∇y] = Ω̄4
20∇p + ( 1

5 Ω̄5
10 + 3

8H̄01)∇x − 1
4H̄10∇y.

The derivations and coefficients can be also expressed in terms of non-
branching invariants J̃1 = 8

3∇xJ1 and J̃2 = 4∇yJ2.

Theorem 2. The space I of differential invariants is generated by the invari-
ant derivations ∇x,∇y,∇p on the generic stratum.

Indeed, we mean here that taking coefficients of the commutators, adding
their derivatives etc leads to a complete list of basic differential invariants.

On the other hand, if we want to list generators according to the order, so
that invariant derivations only add new in the corresponding order, then we
shall restrict to H̄10, H̄01, K̄ in order 5, add Ω̄6−i−j

ij in order 6 and the rest
in every order is generated from these by invariant derivations with ∇j . The
relations can be deduced from these of §1.2.2.

3.3 Equivalence problem

2nd order ODEs E can be considered as sections sE of the bundle π, whence
we can restrict any differential invariant J ∈ Ik to the equation via pull-back
of the prolongation:

JE := (s(k)
E )∗(J) ∈ C∞loc(R3(x, y, p)).

Consider most non-degenerate 2nd order ODEs E , such that10 H̄E
10, H̄E

01,
K̄E are local coordinates on R3(x, y, p). Then the other differential invariants
on the equation can be expressed as functions of these:

H̄E
ij = ΦEij(H̄

E
10, H̄

E
01, K̄

E), K̄E
ij = ΨEij(H̄

E
10, H̄

E
01, K̄

E), Ω̄k E
ij = Υ k E

ij (H̄E
10, H̄

E
01, K̄

E).

Due to the relations above we can restrict to the following collection of func-
tions:

ΦE20, Φ
E
11, Φ

E
02, Ψ

E
10, Ψ

E
01, Υ

6 E , Υ 5 E
10 , Υ 4 E

20 , (1)

the others being expressed through the given ones via the operators of deriva-
tions (which naturally restrict to E as directional derivatives).

Theorem 3. Two generic 2nd order differential equations E1, E2 are point
equivalent iff the collections (1.1) of functions on R3 coincide.

10 Here and in what follows one can assume (higher micro-)local treatment.
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Proof. Necessity of the claim is obvious. Sufficiency is based on investigation
of solvability of the corresponding Lie equation11

Lie(E1, E2) = {[ϕ]2z ∈ J2(R2,R2) : ϕ(2)(E1 ∩ π−1
2,0(z)) = E2 ∩ π−1

2,0(ϕ(z))}, (2)

which has finite type. Notice that the prolongation Lie(E1, E2)(k) consists of
the jets [ϕ]k+2

z such that ϕ(2) transforms k-jets of the equation E1 to the k-jets
of the equation E2 along the whole fiber over z ∈ J0R = R2(x, y).

Proposition 4 Suppose that the system Lie(E1, E2) is formally solvable; more
precisely let T ⊂ Lie(E1, E2)(10) ⊂ J12(R2,R2) be such a manifold that π12|T
is a submersion onto R2. Then this system is locally solvable12, so that the
equations are point equivalent, i.e. ∃ϕ ∈ Diff loc(R2,R2): ∀z ∈ R2 [ϕ]2z ∈
Lie(E1, E2).

Indeed, the symbol of the system Lie(E1, E2) (provided it is non-empty,
which is usually the case for generic E1, E2) is the same as for the symmetry
algebra sym(E), namely: g0 = T = R2, g1 = T ∗ ⊗ T , g2 ⊂ S2T ∗ ⊗ T has
codimension 4 and no (complex) characteristic covectors, so that g3 = g

(1)
2 =

0, whence ⊕ gi ' sym(y′′ = 0) ' sl3.
It should be also noted that the first prolongation Lie(E1, E2)(1) ⊂ J3(R2,R2)

always exists and is of Frobenius type, while the next one has proper projec-
tion unless the compatibility conditions vanish.

We are interested in solvability of the system, so we successively add the
compatibility conditions. The first belongs to the space H2,2(Lie) ' R2, but
it may happen that only one of the components is non-zero (if both are zero,
the system is compatible and we are done, if both are non-zero we have more
equations to add and the process stops earlier). So we add this equation of
the second order to the system of 4 equations and get a new system L̃ie of
formal codim = 5.

Then we continue to add equations-compatibilities and can do it maximum∑
dim gi = 8 times, so that we get 3 + 8 = 11-th order condition. After this

we get only discrete set of possibilities for solutions and checking them we get
that either we have a 12-jet solution or there do not exist solutions at all.

In these arguments we adapted dimensional count, i.e. we assumed reg-
ularity. But singularities can bring only zero measure of values (by Sard’s
lemma), so that our condition still works even in smooth (not only analytic)
situation.
11 It is important not to mix solvability, i.e. existence of local solutions, with com-

patibility, i.e. existence of solutions with all admissible Cauchy data. The latter
may be cut by the compatibility conditions. This confusion occurred in the proof
of Theorem 8.3 from [Y]: the Lie equation is not formally integrable except for
maximally symmetric case.

12 A regularity assumption is needed for this, which is given by the non-degeneracy
condition dH̄E

10 ∧ dH̄E
01 ∧ dK̄E 6= 0.

11



Now let us explain formal solvability for our problem. A jet [ϕ]k+2
z belongs

to the prolongation Lie(E1, E2)(k) iff ϕ(k+2) transforms E(k)
1 ∩ π−1

k+2,0(z) to
E2 ∩ π−1

k+2,0(ϕ(z)). For randomly chosen equations the system Lie(E1, E2) will
be empty over any point z ∈ R2 just because none map can transform the
whole fiber E1 ∩ π−1

2,0(z1) into another fiber E2 ∩ π−1
2,0(z2) (example: ODEs

y′′ = f(x, y, y′) with polynomial dependence on p = y′ of degrees 3 and 4).
The compatibility for the system Lie(E1, E2) of order k are the condi-

tions that ϕ∗ transforms the restricted order k differential invariants JE2
into JE1 . Since this is possible by our assumption, we get prolongation
T ⊂ Lie(E1, E2)(10). Moreover this T will be a submanifold and no singularity
issues arise. This yields us local point equivalence.

Remark 1 If differential invariants J1 . . . J3 are independent on equation E,
then there is another way to define invariant derivatives [Lie1, Ol, KL1], so
called Tresse derivatives, which in local coordinates have the form: ∂̂/∂̂Ji =∑

j [Da(Jb)]−1
ij Dj. In our case, when we take H̄E

10, H̄
E
01, K̄

E as coordinates on
the equation, they are just ∂/∂H̄E

10, ∂/∂H̄E
01, ∂/∂K̄E , when restricted to E.

Another generic case is when we have 3 functional independent invariants
among13

H̄E
10, H̄E

01, K̄E , H̄E
20, H̄E

11, H̄E
02, K̄E

10, K̄E
01, Ω̄6 E , Ω̄5 E

10 , Ω̄4 E
20 . (3)

In this case we can express the rest of invariants through the given 3 basic,
and the classification is precisely the same as in Theorem 3.

There are other regular classes of 2nd order ODEs (in general, equations
are stratified according to functional ranks):

1. Collection (1.3) has precisely 2 functionally independent invariants,
2. Collection (1.3) has only 1 functionally independent invariant,
3. Collection (1.3) consists of constants.

In cases 1 or 2 we can choose basic invariants (2 or 1 respectively – note
that the space of all differential invariants, not only of collection (1.3), will
then have functional rank 2 or 1) and express the rest through them. The
functions-relations will be again the only obstructions to point equivalence.

In the latter case all differential invariants are constant on the equation E ,
so for the equivalence these (finite number of) constants should coincide.

Remark 2 Cartan’s equivalence method provides a canonical frame (on some
bundle over the original manifold), which yields all differential invariants but
with mixture of orders. Otherwise around, given the algebra of differential in-
variants, we can choose J1, . . . , Js among them, which are functionally inde-
pendent on a generic (prolonged) equation. Then dJ1, . . . , dJs will be a canon-

13 We do not know if this is realizable in other cases, than that described by Theorem
3.
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ical basis of 1-forms, which can work as a (holonomic) moving frame. Non-
holonomic frames can appear upon dualizing invariant (non-Tresse) deriva-
tives.

Let us finally give another formulation of the equivalence theorem. We can
consider collection (1.3) as a map R3 ' E → R11 by varying the point of our
equation E . Thus we get (in regular case) a submanifold of R11 of dimension
3, 2, 1 or 0 respectively. This submanifold is an invariant (and the previous
formulation was only a way to describe it as a graph of a vector-function):

Theorem 5. Two 2nd order regular differential equations E1, E2 are point
equivalent iff the corresponding submanifolds in the space of differential in-
variants R11 coincide.

4 Singular stratum: projective connections

On the space J3R3(x, y, p) the lifted action of the pseudogroup h is transitive.
But its lift to the space of 4-jets is not longer such: There are singular strata,
given by the equations I = 0,H = 0. Moreover they have a singular substra-
tum I = H = 0 in itself, on which the pseudogroup action is transitive, so that
any equation from it is point equivalent to trivial ODE y′′ = 0 [Lie2, Lio, Tr1].

In this subsection we consider the singular stratum I = 014. It corresponds
to equations of the form

y′′ = α0(x, y) + α1(x, y)p + α2(x, y)p2 + α3(x, y)p3, p = y′. (4)

This class of equations is invariant under point transformations. Moreover it
has very important geometric interpretation, namely such ODEs correspond
to projective connections on 2-dimensional manifolds [C]. We will indicate 3
different approaches to the equivalence problem.

4.1 The original approach of Tresse

The idea is to investigate the algebra of differential invariants, following S.Lie’s
method, and then to solve the equivalence problem via them. In [Tr1] lifting
the action of point transformation to the space Jk(2, 4) (jets of maps (x, y) 7→
14 The other stratum H = 0 can be treated similarly. Indeed, though the invari-

ants I, H look quite unlike, they are proportional to self-dual and anti-self-dual
components of the Fefferman metric [F] and this duality is very helpful [NS].

Note however that even though it is difficult to solve the PDE H = 0 without
non-local transformations, some partial solutions can be found using symmetry
methods. For instance, a 3-dimensional family of solutions is y′′ = ϕ(p)/x with

ϕ′′′ =
ϕ′′(2ϕ− 2− ϕ′)

ϕ(ϕ− 1)
.
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(α0, . . . , α3)) he counts the number of basic differential invariants of pure order
k to be

k : 0 1 2 3 4 5 6 7 8 . . . k . . .
# : 0 0 0 0 6 8 10 12 14 . . . 2(k − 1)

An independent check of this (with the same method as in §1.3.1) is given in
[Y].

The action of g is transitive on the space of 1st jets and its lift is transitive
on the space of second jets J2(2, 4) outside the singular orbit L1 = L2 = 0,
where

L1 = −α2xx+2α1xy−3α0yy−3α3α0x+α1α2x−6α0α3x+3α2α0y−2α1α1y+3α0α2y

L2 = −3α3xx+2α2xy−α1yy−3α3α1x+2α2α2x−3α1α3x+6α3α0y−α2α1y+3α0α3y

These second order operators15 were found by S.Lie [Lie2] who showed that
vanishing L1 = L2 = 0 characterizes trivial (equivalently: linearizable) ODEs.
R.Liouville [Lio] proved that the tensor

L = (L1dx + L2dy)⊗ (dx ∧ dy), (5)

responsible for this, is an absolute differential invariant.
Further on Tresse claims that all absolute differential invariants can be

expressed via L1, L2, but [Lio, Tr2] do not contain these formulae. The problem
was handled recently by V.Yumaguzhin [Y] (the whole set of invariants was
presented, though not fully described).

Namely it was shown that the action of g in J3(2, 4) is transitive outside
the stratum F3 = 0, where

F3 = (L1)2Dy(L2)− L1L2(Dx(L2) +Dy(L1)) + (L2)2Dx(L1)

− (L1)3α3 + (L1)2L2α2 − L1(L2)2α1 + (L2)2α0

is the relative differential invariant from [Lio]. The other tensor invariants can
be expressed through these. The invariant derivations are16

∇1 =
L2

(F3)2/5
Dx − L1

(F3)2/5
Dy, ∇2 =

Ψ2

(F3)4/5
Dx − Ψ1

(F3)2/5
Dy,

where
15 corresponding to (3k,−3h) in [Tr1].
16 The first one in the relative form was known already to Liouville [Lio]:

∇̃1 = L1Dy − L2Dx + m(Dx(L2)−Dy(L1)) : Rm →Rm+2,

where Rm is the space of weight m relative differential invariants corresponding
to the cocycle Cξ = divω0(ξ), where ω0 = dx∧ dy. He was very close, but did not
write the second one.
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Ψ1 = −L1(L1)y + 4L1(L2)x − 3L2(L1)x − (L1)2α2 + 2L1L2α1 − 3(L2)2α0,

Ψ2 = 3L1(L2)y − 4L2(L1)y + L2(L2)x− 3(L1)2α3 + 2L1L2α2 − (L2)2α1.

Now we can get two differential invariants of order 4 as the coefficients of
the commutator

[∇1,∇2] = I1∇1 + I2∇2.

Related invariants are the following: one applies the invariant derivations ∇i

(extended to the relative invariants) to F3 and gets another relative differential
invariant of the same weight (the relation here is almost obvious since ∇1∧∇2

is proportional to F3). Thus ∇1(F3)/F3,∇2(F3)/F3 are absolute invariants.
To get four more invariants I3, . . . , I6 of order 4, consider the Lie equa-

tion, formed similar to (1.2) for the cubic 2nd order ODEs (1.4), see (1.6).
After a number of prolongation-projection we get a Frobenius system, and its
integrability conditions yield the required differential invariants (in [Y] these
are obtained in a different but seemingly equivalent way).

Now we can state that the algebra I is generated by the invariants
I1, . . . , I6 together with the invariant derivatives ∇1,∇2. An interesting prob-
lem is to describe all differential syzygies between these generators.

4.2 The second Tresse approach

The invariants of §1.2.2 are not defined on the stratum I = 0 due to the
fact that most expressions contain I in denominator. But due to footnote14

the relative invariants I, H are on equal footing. And in fact Tresse in [Tr2]
constructs another basis of relative invariants with H in denominator.

Thus if we restrict this set to the stratum I = 0 minus the trivial equation,
corresponding to I = H = 0, we get relative/absolute differential invariants
of the ODEs (1.4). For instance H is proportional to L1 + L2p, which under
substitution of p = dy

dx is proportional to the tensor L. The other invariants
are rational functions in p on the cubics (1.4), which may be taken in corre-
spondence with the invariants of the approach from §1.4.1.

The proposed idea can be viewed as a change of coordinates in the algebra
I. Yet, another approach was sketched in [Tr1], which can be called a non-local
substitution.

Namely by a point transformation Tresse achieves L2 = 0, and so brings
the tensor L1dx+L2dy to the form λ dx. Then the point transformation pseu-
dogroup is reduced to the triangular pseudogroup x 7→ X(x), y 7→ Y (x, y),
and the invariants are generated by the invariant derivatives ∆x,∆y and the
invariants B, C,D of orders 1, 2, 2 respectively ([Tr1], ch.III), which though
do not correspond to the orders in the approach of §1.4.1.

4.3 Lie equations

Let sE : R2 → R4 be the map (x, y) 7→ (a0, a1, a2, a3) corresponding to a 2nd
order ODE E (1.4). With two such ODEs we relate the Lie equation on the
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equivalence between them:

Lie(E1, E2) = {[ϕ]2z ∈ J2(2, 2) : ϕ̂
(
sE1(z)

)
= sE2(ϕ(z))}, (6)

where ϕ̂ : R2 × R4 → R2 × R4 is the lift of a map ϕ : R2 → R2 to a map of
ODEs (1.4). On infinitesimal level, the lift of a vector field X = a ∂x + b ∂y is

X̂ = a ∂x + b ∂y + (bxx + α0(by − 2ax)− α1bx) ∂α0

+(2bxy−axx−3α0ay−α1ax−2α2bx)∂α1+(byy−2axy−2α1ay−α2by−3α3bx)∂α2

+ (−ayy − α2ay + α3(ax − 2by))∂α3 .

For one equation E1 = E2 infinitesimal version of the finite Lie equation
Lie(E , E) describes the symmetry algebra (which more properly should be
called a Lie equation [KSp]) sym(E): it is formed by the solutions of

lie(E) = {[X]2z ∈ J2(2, 2) : X̂ ∈ TsE(z)[sE(R2)]}. (7)

The basic differential invariants of the pseudogroup Diff loc(R2,R2) action on
ODEs (1.4) arise as the obstruction to formal integrability of the equation
lie(E) (for the equivalence problem Lie(E1, E2), but the investigation is similar).
In coordinates, when the section sE is given by four equations αi−αi(x, y) = 0,
overdetermined system (1.6) is written as

bxx + α0(by − 2ax)− α1bx = aα0x + b α0y

2bxy − axx − 3α0ay − α1ax − 2α2bx = aα1x + b α1y

byy − 2axy − 2α1ay − α2by − 3α3bx = aα2x + b α2y

−ayy − α2ay + α3(ax − 2by) = aα3x + b α3y

The symbols gi ⊂ SiT ∗⊗T are: g0 = T = R2, g1 = T ∗⊗T ' R4, g2 ' R2

and g3+i = 0 for i ≥ 0. The compatibility conditions belong to the Spencer
cohomology group H2,2(lie) ' R2: this is equivalent to the tensor L of (1.5).
If L = 0, the equation is integrable17 and the solution space is the Lie algebra
sl3.

If L 6= 0, the equation lie0 = lie(E) has prolongation-projection18 lie1 =
π4,1(lie(2)) with symbols g0 = T , ḡ1 ' R2 ⊂ g1, g2 ' R2 and g3+i = 0 for
i ≥ 0.

After prolongation-projection, one gets the equation lie2 with symbols g0 =
T , g̃1 ' R1 ⊂ ḡ1 and g2+i = 0 for i ≥ 0. This equation has the following space
of compatibility conditions: H1,2(lie3) ' R1. It yields the condition of the
third order in αi: F3 = 0 (this, together with other invariants [R], characterizes
equations with 3-dimensional symmetry algebra, namely sl2).
17 not only formally, but also locally smoothly due to the finite type of lie.
18 This means that the Lie equation has the first prolongation lie(1) ⊂ J3(2, 2), but

the next prolongation exists only over the jets of vector fields X, preserving the
tensor L.
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If F3 6= 0, then the prolongation-projection yields the equation lie3 with
g0 = T and g1+i = 0 for i ≥ 0. The compatibility conditions are given by the
Frobenius theorem and this provides the basis of differential invariants.

Remarks. 1. The idea to reformulate equivalence problem via solvability
of an overdetermined system appeared in S.Lie’s linearization theorem, where
he showed that an ODE (1.4) is point equivalent to the trivial equation y′′ = 0
iff the system (see [Lie2], p.365 (we let z = c, w = C etc), and also [IM])

∂w

∂x
= zw − α0α3 − 1

3
∂α1

∂y
+

2
3

∂α2

∂x
,

∂z

∂x
= z2 − α0w − α1z +

∂α0

∂y
+ α0α2,

∂w

∂y
= −w2 + α2w + α3z +

∂α3

∂x
− α1α3,

∂z

∂y
= −zw + α0α3 − 1

3
∂α2

∂x
+

2
3

∂α1

∂y
.

is compatible. The compatibility conditions here are given by the Frobenius
theorem: L1 = L2 = 0. In fact, the system can be transformed into a linear
system19, which is equivalent to half of our once prolonged Lie equation lie(1)

(Lie considers combinations of the unknown functions-component of the point
transformation, that’s why in the third order we get only 4 = 8/2 equations,
the second half of equations was not much used by him).

2. Other ways of getting differential invariants arise from problems which
have projectively invariant answers. For instance the following system arose
in 3 independent problems:

uy = P0[u, v, w], ux+2vy = P1[u, v, w], 2vx+wy = P2[u, v, w], wx = P3[u, v, w],

where Pi[u, v, w] are linear operators of a special type, with coefficients being
smooth functions in x, y. This system can be obtained similar to lie from the
condition of existence of Killing tensors20.

In [K] solvability of this system lead to an invariant characterization of
Liouville metrics, in [BMM] to normal forms of metrics with transitive group
of projective transformations and in [BDE] – to the condition of local metris-
ability of projective structures on surfaces.

All these problems have the answers (for instance, in the first mentioned
paper, the number of Killing tensors of a metric), which are projective invari-
ants. Thus they provide projective differential invariants and in turn can be
expressed via any basis of them.

3. Many papers addressed the higher-dimensional version of the same
equivalence problem (which is surprisingly easier, because the Lie equation
is more overdetermined). In Cartan [C] this is the study of the projective con-
nection. Refs. [Th, Lev] address the algebra of scalar projective differential
invariants.
19 S.Lie considers finite transformations, whence the non-linearity. A projective

transformation is needed to change this into a linear system, while the infinitesi-
mal analog — our Lie equation lie(E) – is linear from the beginning.

20 Substitution u = 3ξy, w = 3ηx, v = −(ξx + ηy)/2 transforms this system to the
kind ξyy = . . . , 2ξxy − ηyy = . . . , ξxx − 2ηxy = . . . ,−ηxx = . . . , which has the
same symbol as (1.7).
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However in neither of these approaches the Tresse method was superseded.
For instance, in the latter reference even the number of differential invariants
for the 2-dimensional case was not determined. On the other hand, the method
of Lie equations allows to obtain the algebra of projective invariants in the
higher-dimensional case as well.

5 Application to symmetries

At the end of [Tr2] a classification of symmetric equations is given. It turns
out that the symmetry algebra can be of dimensions 8, 3, 2, 1 or 0. This
follows from the study of dependencies among differential invariants, and it
is not obvious that this automatically applies to all singular strata (but it is
true).

Thus if dim Sym(E) = 8 the ODE is equivalent to the trivial y′′ = 0. If
dimSym(E) = 3, the normal forms are (y′ = p):

y′′ = pa y′′ =
(cp +

√
1− p2)(1− p2)

x

y′′ = ep y′′ = ±(xp− y)3.

Only the last form belongs to the singular stratum I = 0.
Due to symmetry between I and H, there should be corresponding normal

form with H = 0. Here one can be mislead since direct calculations shows
that none has vanishing H. The reason is however that Tresse uses Lie’s
classification of Lie algebras representation by vector fields on the plane. For
3-dimensional algebras Lie used normal forms over C, and ineed the third
normal form has H = 0 for the parameter c = ±i. Thus over R the above
normal forms should be extended.

As the symmetry algebra reduces to dimensions 2 we have the respective
normal forms

y′′ = ψ(p) and y′′ = ψ(p)/x.

It is important that for singular strata the classification shall be finer. This is
almost obvious for projective connections (cubic ψ), but for metric projective
connections this is already substantial, see [BMM].

The case dimSym(E) = 1 has only one quite general form y′′ = ψ(x, p)
with an obvious counterpart for projective connections (for the metric case
see [Ma]).

Remark 3 When the transformation pseudogroup reduces from point to fiber-
preserving (triangular) transformations of J0R(x) = R2(x, y), the algebra of
differential invariants grows, but the symmetric cases change completely. In
particular, the symmetry algebra can have dimensions 6, 3, 2, 1 or 0 [KSh,
HK].
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Not much is known about the criteria for having the prescribed dimen-
sion of the symmetry algebra, except for the corollary of Lie-Liouville-Tresse
theorem: dimSym(E) = 8 iff L = 0.

In [Tr2] the following was claimed (we translate it to the language of
absolute differential invariants):

¦ The symmetry algebra is 3-dimensional iff all the differential invariants
(on the equation) are constant.

¦ The symmetry algebra is 2-dimensional iff the space of differential invari-
ants has functional rank 1, i.e. any two of them are functionally dependent
(Jacobian vanishes).

¦ The symmetry algebra is 1-dimensional iff the space of differential invari-
ants has functional rank 2 (all 3× 3 Jacobians vanish).

This (unproved in Tresse, but correct statement) is however inefficient, since
checking all invariants is not practically possible. Here is an improvement:

Theorem 6. The above claims hold true if we restrict to the basic absolute
differential invariants of order ≤ 6 described in §1.2.2.
What is the minimal collection of differential invariants answering the above
question is seemingly unknown (except for the case dim Sym(E) = 3 for I = 0
handled in [R]).

A Appendix: Another approach

B.Kruglikov, V. Lychagin

1. Consider the stabilizer l8 ⊂ g of a point (x, y) ∈ R2(x, y) = J0R(x). We
can choose coordinates so that x = y = 0. The vector fields generating this
subalgebra of vector fields of Fx,y = R2(p, u) = π−1

2,0(x, y) are

l8 = 〈∂p, ∂u, p ∂p, u ∂u, p ∂u, p2∂u, p3∂u, p2∂p + 3p u ∂u〉

This is an 8-dimensional Lie algebra with Levi decomposition R5n sl2, where
R5 is the radical, which is a solvable Lie algebra with 4-dimensional (commu-
tative) nil-radical.

In Fx,y the 2nd order equation E is a curve21 u = f(p). Since in equivalence
problem we can transform one base point to another by a point transformation
(any point to any if the equation possesses a 2-dimensional symmetry group,
transitive on the base), the equivalence problem is reduced to the equivalence
of curves on the plane R2(p, u) with respect to the Lie group l8 action.

The action lifts to the spaces JkR(p) = Rk+2(p, u, up, . . . ) and is transitive
up to 3rd jets. The first singular orbit appears in the space J4R(p) and is
S1 = {G4 = u4 = 0} (we continue to use the same notations as above, so that
21 depending parametrically on x, y.

19



u4 = upppp). The next singular orbit (different from prolongation of this one)
appears in the space J6R(p) and is S2 = {G6 = 5u4u6 − 6u5 · u5 = 0}.

Notice that the second equation belongs to the prolongation of the first:
S2 ⊂ S(2)

1 (so it is a sub-singular orbit). The functions G4, G6 are relative
differential invariants. In this case the weights can be chosen via cocycles
Cr

ξ = divω0(ξ) − 1
2 divΩ(ξ1) and Cs

ξ = 1
2 divΩ(ξ1), where ω0 = dp ∧ du, Ω =

−ω ∧ dω = dp∧ du∧ dup (for ω = du−up dp) and ξ = A∂p + B∂u, ξ1 = Xf =
A∂p + B∂u + (Dp(B)− ∂p(A)up)∂up , ξ̂ = X

(∞)
f with

f = B−Aup, A = a0+a1p+a2p
2, B = b0+b1p+b2p

2+b3p
3+b4u+3a2p u.

Denoting Rr,s = {ψ ∈ C∞(J∞R) : ξ̂(ψ) = −(r Cr
ξ + sCs

ξ )ψ}, we get22:

G4 ∈ R4,−1, G6 ∈ R10,−2.

The relative invariant derivative here equals

♦p = Dp − 2r + 3s

5
u5

u4
: Rr,s →Rr+1,s.

It acts trivially on G4, but from its action on G6 we can extract an absolute
invariant. Indeed since G4/

√
G6 ∈ R−1,0, we have: ♦p(G4/

√
G6) ∈ R0,0 = I

and the latter expression is non-zero.
Actually the action of our 8-dimensional group has open orbits through

generic points on J6R(p) and the first absolute differential invariant appear
at order 7 and equals23

I7 =
25(u4)2u7 + 84(u5)3 − 105u4u5u6

(G6)3/2
,

which coincides with −10♦p(G4/
√

G6).
In each higher order we get 1 new differential invariant. They determine

Tresse derivative (see [KL1]), but we can obtain the absolute invariant deriva-
tive directly:

¤p =
G4√
G6

♦p

∣∣∣∣
r=s=0

=
u4

√
5u4u6 − 6u5 · u5

Dp : I → I.

This can be expressed via invariants of §1.3.2 as 1√
5Ω6∇p.

Thus on the generic stratum every differential invariant is (micro-locally)
a function of the invariants I7, ¤p(I7), ¤2

p(I7), . . . of orders 7, 8, 9, . . .
2. It is easy to see that the class of cubic curves u = Q3(p) is invariant

with respect to the Lie group L8 = Exp(l8) action. This 4-dimensional space
forms a singular orbit, on which L8 acts transitively.
22 Note that since the group is changed the grading is changed as well. In particular

G4, which formally coincides with I of section §1.2.1, has a different grading.
23 Superscript after brackets means the power, while the others are indices.
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Another singular orbit is S2, which is a 6-dimensional manifold of curves
u = (a0 + a1p + a2p

2 + a3p
3) + b/(p − c), and L8 acts transitively there on

the generic stratum. The singular stratum is given by the equation b = 0 and
coincides with the previous stratum S1.

3. Consider the stabilizer l6 = St0 ⊂ h = g2 of a point x2 = (x, y, p, u) ∈
J0R3(x, y, p) = J2R(x). Since the pseudogroup g2 acts transitively on J2R(x),
choice of x2 is not essential, in particular we can take a coordinate represen-
tative (x, y, 0, 0). This Lie algebra is generated by (prolongation of) the fields

l6 = 〈p ∂p, u ∂u, p ∂u, p2∂u, p3∂u, p2∂p + 3p u ∂u〉

and is solvable (with 4-dimensional nil-radical of length 2). Thus investigation
of its invariants is easier thanks to S.Lie quadrature theorem.

Moreover we can continue and take the stabilizer St3 ⊂ g5 of a point in
J3R3(x, y, p), where the action of h is still transitive. This stabilizer is a trivial
1-dimensional extension of the 2D solvable Lie algebra.

4. With all these approaches we get enough invariants to pursue classifi-
cation in generic case (and even to deal with singular orbits). Indeed, we get
a subalgebra V in the algebra of all differential invariants I, which we can
restrict to the equation. Provided that there are invariants in V independent,
on our 2nd order ODE E , we solve the equivalence problem.

In general to restore the whole algebra I we must add to this vertical
invariants algebra V invariant derivatives ∇x, ∇y. This is similar to Liouville
approach for cubic 2nd order ODEs (retrospectively after [C] – projective
connections), who found in [Lio] only a subalgebra of (relative) differential
invariants (the second relevant invariant derivative ∇2 = Ψ2Dx − Ψ1Dy + ... :
Rr → Rr+4 and the corresponding part of differential invariants was not
established).
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