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Abstract: By studying the Lagrange resolvents of factors of the I-th di-
vision polynomials of an elliptic curve defined over a field with I-th roots of
unity and having a rational l-torsion point, we find a criterion for deciding
whether all the I-torsion points are rational or not. We then compute it
explicitly in the case [ = 3, 5 and 7.
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1. Introduction and Notation

The cyclicity of the group of rational points of an elliptic curve defined over
a finite field plays an important role in modern cryptography [4], and for
instance, Kaliski requires it in designing a one-way permutation [3]. Actu-
ally, the order of the largest cyclic subgoup is far more important than the
order of the group itself. Recently, it has been shown that these two are
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of approximately the same size for almost all elliptic curves [2]. It is thus
natural to try to find criteria for deciding this cyclicity.

How should such criteria look like? Let [ be an odd prime number
and K any field of characteristic different from I. The Weil pairing shows
that a necessary condition for an elliptic curve defined over K to have all
its I-torsion points rational is that K has a primitive /-th root of unity.
Thus, without loss of generality, we can assume that this is the case. In the
language of modular curves, an elliptic curve over K together with a rational
point of [-torsion gives rise to a rational point P on X, (I). We can therefore
reformulate our problem in the following way: given a rational point on the
curve X, (I), when does this point lift to a rational point on the modular
curve X(I)? Tt is known that the extension K(X(!)) is Galois of degree
over K(X (1)) and is therefore a Kummer extension [1]. Thus there exists a
function f € K(X;(l)) such that

K(X () =KX M),

If we specialize to P, we see that it admits a rational lift on X (1) if and only
if f(P) is a l-th power in K We will make this function f explicit in this
article.

We begin this paper by giving a brief presentation of the notation and
concepts used in the sequel. In Section 2, we study Lagrange resolvents for
polynomials of prime degree [ over a field K containing a primitive [-th root
of unity such that its Galois group is of order dividing I. We show that
in this case, there exists a criterion for deciding whether the polynomial
splits or is irreducible. In Section 3, we show that if an elliptic curve E
has a rational I-torsion point over K, then its I-th division polynomial is
the product of “Tl linear factors and ‘“Tl factors of degree I, whose Galois
group is of order dividing I. Using the results from the previous part, we
can determine whether all the torsion points are rational or not. Finally, in
Section 4, we compute an easy criterion when [ = 3, 5 or 7.

In this paper, K is a field, and K a fixed algebraic closure. If n is a
positive integer, K® denotes the cartesian product of n copies of K, while
K™ is the subset of K which consists of n-powers of elements of K We
refer to [5] for the theory of elliptic curves, and we will use the notation
found there. In particular, if E is an elliptic curve defined by a Weierstrass
equation

E: y2 =a12y + azy = z3 +a2:r:2 + a4z + ag,

and if L/K is any field extension and n is an integer, then E(L) denotes
the group of L-rational points on the curve, E[n] denotes the subgroup of
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n-torsion of E(K), while E(L)[n] = E(L) N E[n]. It is known that if n is
prime to the characteristic of K, then E[n] = (Z/nZ)?, and in the case where
n is odd, the z-coordinates of the points of E[n] are exactly the roots of the
n-th division polynomial ¢,,, which is a separable polynomial in one variable
of degree ’%‘l Further, we denote by K; (E[n]) (resp. K(E[n])) the field
extension obtained from K by adjoining the z-coordinates (resp. z- and y-
coordinates) of the points of n-torsion.

2. Lagrange Resolvents

Let [ be an odd prime number, and K a field of characteristic different from
[. We assume that K contains a primitive I-th root of unity ¢;. Let P(X) be
a separable polynomial of degree [ over K with the property that its Galois
group G is of order dividing [. Then G is cyclic, generated by an element o,
and P is either irreducible or splits. We would like to have an easy criterion

for distinguishing these two possibilities. Let (zg,z), - ,2;—1) € K be thel
distinct roots of P, indexed in such a way that when #G =, then cz; = z;4,
for i € {0,--- ,1 =2} (for convenience, we shall write <, 5 = z,, for k € Z).

Then, for i € {0,--- ,l — 1}, we define the quantities

-1
- ij
=G
i=0
and

b
Ri—?"i.

Proposition 1. All the R;’s are in K.

Proof. This is obvious when P splits. When P is irreducible, we have
-1 -1
or; = ZC;JUZ'J‘ = ZC;Jiﬂj-i-l = {'r;
j:ﬂ j:O

and therefore
gl ol
oR; = (or;)! = ((ri) = R;. O

Remark 1. Note that if P is irreducible, ¢ # 0 and r; # 0, thenr; € K
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Choosing another primitive [-th root will just induce a permutation of
the r;’s and R;’s. Namely, if & is another primitive [-th root of unity, we
can write { = (. Then we have

-1 -1

oz g
§ ,E{ T = § ,C{ Ij = Tia,s
j=0 j=0

and since a and ! are relatively prime, ¢ — ia is a permutation of the set of
integers modulo [.

Changing the order of the roots is more problematic. Actually, one can
get something completely different in the case when P splits. But we have
an extra condition on the order of the roots when P is irreducible. In this
case, permuting the roots is equivalent to choosing one root, the others being
given by the action of o. Assume that the permutation is given by the root
Zx. Then we have

-1

i, R,
ZCE Ty =0T
j=0

and therefore the R;’s defined either way would be the same. In the following
sections however, the roots of our polynomials will be ordered in such a way
that even in the case when P splits, changing the order of the roots will not
change the R;’s.

Finally, taking another generator 7 of G obviously does not change any-
thing when G is trivial. In the other case, the roots have to be reordered to
satisfy the extra condition, and as we have just noticed, we can assume that
the first root still is zg. As 7 is a generator of G, we have ¢ = 7% for some
integer ¢ relatively prime to [. Then we have

injzjo = IZE Gt = !Zl: G4 o 3o =rz
j=0 §'=0 '=0
and once again, we obtain a permutation of the r;'s.
Proposition 2. The following assertions are equivalent:
1. P splits.
2. Vie{0,---,l -1}, R; e K,
3 Je{l,---,l-1}, R e KH\{0}.
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Proof. Since K contains all the [-th roots of unity, we have

ReKY ornek

Now,
To Ty
1 M. x.l ,
Ti-1 T
where

M= [Cg(s'—l)u-n]

1<i,j<I

is an invertible Vandermonde matrix defined over K. We have therefore
proved that (1) and (2) are equivalent. Moreover, since the inverse of M is

M-1= % [CI(H)U—I)]

1<i,j<i’
ifry =--=mr_ =0, then gp = --- = g = 7 which contradicts the
separability of P. Whence (2) implies (3). Finally, Remark 1 shows the
converse. O

3. Effective Factorisation of the I-th Division Polynomial

Specialization usually does not respect the Galois structure of field exten-
sions. So even though we know that the covering map X (I) — X;(I) is
Galois of degree [, we cannot assert that the field extension K (E[l])/K is
Galois of degree dividing I. We begin then by showing that this is in fact
the case.

Lemma 1. Let [l be an odd prime, and K a field of characteristic dif-
ferent from |. Let E be an elliptic curve defined over K by a Weierstrass
equation

E:y? + a2y + asy = 2° + a2z® + a4z + as.

Then K(E[l])/K is Galois.
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Proof. Let Q = (zg,yg) and R = (zr,yr) form a basis of E[l]. We
obviously have K(E[l]) = Ky (E[l])(y@,yr)- In the tower

K(E[1)

|
]Kw(E[f])(yQ)
K. (E[1))

|
K

the stages K(E[l]) /K. (E[l])(yg) and K, (E[l])(yq) /K. (E[l]) are of degree at
most 2, and separable since yg and yg are roots of separable polynomials.
Indeed, for any z € K, the polynomial

Y? 4+ (a1z +a3)Y — (2 + agz® + agz + ag)

is separable if and only if z is not the z—coordinate of a 2—torsion point.
The extension K, (E[l])/K is Galois since K, (E[l]) is the splitting field
of the separable polynomial ;. Finally, the extension K(E[!])/K is normal.
Indeed, if o is an embedding of K(E[]) in K over K, and P = (zp,yp) € E[l],
then oP = (0zp,oyp) € Ell] because the elliptic curve and the polynomial
1, are defined over K This shows that o induces an automorphism of
K(E[l]), that is, the extension is normal. Putting all the pieces together
proves the lemma. O

Proposition 3. Let (; be a primitive [-th root of unity in K. As
sume that there exists a non-trivial point P € E(K((;))[l]. Let L be either
K(E[])(¢) or Ky (E[1])(¢;). Then Gal (L :K((;)) is cyclic of order either 1

orl.

Proof. Since Gal (K (E[])(¢;) : K) is a quotient of G = Gal (K(E[I])(()
K), it is sufficient to prove the assertion for G. We may also assume that
G € K Let Q = (zq,y0) € E[l] be a point such that (P, Q) forms a basis
of E[l]. Let ¢; be the Weil pairing. Then ¢;(P, Q) is a primitive I-th root of
unity, and taking a multiplum of @), we may assume that this root is (;. Let
o € G. Since o still is a [-torsion point, it can be expressed uniquely as

JQ: AO‘P-I.UO'Q:

where 0 < A, pte < 1 — 1. Moreover, the correspondance o — (Ag, io) is
one-to-one since the coordinates of P and @ generate K(E[l]) over K. Since
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e; is Galois invariant,

G =0 = aei(P,Q) = ei{oP,0Q) = ei( P, A\ P+ Q) = ei(P, Q)" = (f*

and the primitivity of (; shows that p, = 1. We therefore have an injective
group hornomorphism

A: G — Z/[IZ, 1)
o — A,

which proves the proposition. O

Corollary 1. Let Q = (zg,yq) € E[l] be such that (P,Q) forms a
basis of E[l]. Then
K(E(G) = K (E[I)(G) = K(G, zq)-

Proof. Since P is defined over K((;), we have K(E[])((;) = K(G, zg,y0)-
Moreover, [K(E[1])(¢i) : K, (E[1])(¢)] and [K(E[l])(¢) : K(¢i, zg)] are powers
of 2. But we know that [K(E[l])(¢;) : K(¢;)] is odd, so the two first extensions
have to be trivial. 0

Let E be an elliptic curve defined over a field K by a Weierstrass equation
E:y? 4+ ayzy + asy = 2 + agz® + a4 + as.

We assume that there exists a non-trivial point P € E(K(())[l]. Then we
know that ;(X) has at least I‘Tl linear factors, corresponding to the z-
coordinates of the points kP, for k € {1,--- ,I-E—]}, and we can therefore
write

hi(X) =1 f(X H(X—sz)

where ¢;(X) is a monic polynomial of degree Il-,_zl over K.

Corollary 2. Over K((;), the polynomial ¢;(X) is either split or is the
product of 5_71 distinct monic irreducible factors ¢y ;(X) of degree I, and
whose Galois group has order [.

Proof. Let zg € K be any root of the polynomial ¢;. Let Yo € K be
such that @ = (zq,yq) € E[l]. Since (P, Q) forms a basis of E[l], we have

[K(Gi, zq) - K(G)] = [Ke (E[])(G) : K(Gr)] = #Gal (K (E[1))(G) = K(G))-
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This also shows that the Galois group of the splitting field of the irreducible
factors of ¢y is Gal (K, (E[[])(¢:) : K((1)). Finally, the irreducible factors are
distinct since 1); is separable. O

Corollary 3. Let Q € E[l] be such that (P,Q) forms a basis of E[l].
The polynomials

I
pi(X) = [ (X - 2(:Q + i P))
j=1

fori € {1,---, I*Tl} are in K((;)[X]. In particular, they are either split or
irreducible over K((;). In the latter case, we have p;; = ¢, for a unique k;
and there exists a generator o; € G = Gal (K (E[l])(¢1) : K((1)) such that

0i(5(iQ + jP)) = z(iQ + (j + 1)P).

Proof. If #G = 1, there is nothing to prove. If #G = [, then the
morphisin ( 1) is an isomorphism. Let us fix an i € {1,--- ,‘-‘—1}, and let
k € Z be such that ki = 1 [I]. Let o; = A~!(i). By definition of A, o; is a
generator of G and 0;(Q) = P + kQ). We have therefore, for all j,

0i(iQ + jP) =iQ + (j + k)P =1iQ + (j + 1)P.

Thus p; € K({)[X]. The existence and uniqueness of k; results from the
degrees of the p;; and the fact that their product is ¢;. O

Proposition 4. We have

EK(Q)] ~ (Z/1Z)? <« Vi, p; splits,
< i, pi; splits.

Proof. This follows directly from Corollaries 1 to 3. O

4. Application to 3—, 5— and 7—Torsion

Using the results of the two previous parts, we can easily find a generalization
of a theorem on 3-torsion proved in [6].
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Theorem 4. Let K be a field of characteristic different from 3. Let E
be an elliptic curve defined over K by a Weierstrass equation

E:y? 4 aizy +asy = z° + asz® + a4z + ap.
Assume that E has a K-rational point of 3-torsion. Then we have

E(K(G3))B] ~ (Z/3Z)* « A € K(¢3)®).

We will not present the proof here, since it is very similar to the proofs
of the two other theorems of this section.

We are interested in finding a similar statement for 5— and 7—torsion.
Obviously, the previous theorem cannot be generalized to these cases since
the discriminant A of the elliptic curve E is defined up to a 12-th power of
a non-zero element.

From now on, [ =5 or [ = 7. Elliptic curves having a rational [—torsion
point can be parametrized by the affine part of a curve of genus 0 (cf. [1]).
Namely, there is a one-to-one correspondence between Y7 (l)(K) and the set
ELL; of couples (E, P), where F is an elliptic curve defined over K and P is
a non-zero point in E(K)[!], up to K-isomorphism (that is an isomorphism
E — E' over K that sends P to P'). In our case, the smooth projective
model X (I)(K) of Y1 ({)(K) is a curve of genus 0. Moreover, one can explicitly
write down a bijection between a Zariski open of the affine line and £LL;.
These bijections are the following:

V(P) j ; }:az:g

where
PBs(T) = T%(T? - 11T - 1) = T°Qs(T),
P(T)=T"(T-1)"(T?-8T%2+5T+ 1) =T"(T - 1)'Q+(T),
V(F) = K\{roots of A},

Esi:y? + (1 —t)zy — ty = 2° — tz?,
Erg:iy?+ (1+t—tDay+ (12— )y = z° + (2 — t3)22,

and 6(T) = E;r. Note that the value of the polynomial P(T) at t is equal
to the discriminant of the curve Ej; in both cases. The polynomials P;(T)
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split over K((;), and their roots are a5 = 8+ 5(s +5C5 and fs = 3—5(s —5(;
when [ =5, and whenl=7, a7 =1-2(7 - 3(7 3¢ - 2(7, Br=1-2(—
3¢3 — 3¢2 — 2¢3 and finally v7 = 1 — 3¢7 — 2¢3 — 2¢7 — 3¢%.

Theorem 5. Let K be a field of characteristic different from 5. Let
(s € K be a primitive 5-th root of unity. Define a5 = 8 + 5(s + 5(; and
Bs = 3 —5( — 5(:. Let t € K be such that Ps(t) # 0, and consider the
elliptic curve Es;. Then

t— (5)

Es+(K(¢s))[5] = (Z/5Z) & K(¢)®

We state the analogous theorem for [ = 7.

Theorem 6. Let K be a field of characteristic different from 7. Let
(7 € K be a primitive 7-th root of unity. Define a7 = 1—2(7 —3¢%—3(3 —2(%,
Br=1-203-3¢3 -3¢} 203 and vy = 1 -3¢ — 203 - 2( - 3(}. Let t € K
be such that P;(t) # 0, and consider the elliptic curve E7 . Then

( — a7)(t — Br)?
(t —ypr)®

Proof of Theorem 5. Consider the elliptic curve

E74(K(¢7))[7] = (2/72)? e K(¢7)™

Er:z?+4+ (1 -T)zy — Ty = 25 — Tz?

defined over the ring Z [%] [T]. Its discriminant is Ay = T°(T?—11T—1). We
will work in projective coordinates so that no division will be needed to add
points on this curve. All the computations are done with MAGMA. We know
that the points P = [0,0,1], 2P = [T, T?,1], 3P = [T,0,1] and 4P = [0, T\ 1]
are points of 5-torsion on that curve. Let z5 be the image of U under the
canonical projection in the ring § = R[U]/ < U4+ U3+ U?+U +1 >. The
fifth division polynomial 15(X) factorizes over S in the following way:

P5(X) = 5X (X — T)ps,1(X)ps.2(X)
with

55,1 (X) = 5X° + (2T% =TT +3 — Qs(T)(25 + 25)) X*
+ T (T% + 9T — 11 + 2Q5(T) (25 + 25)) X° + 5T%(T — 3) X
+ T2 (27% — 12T + 18 — Q5(T) (25 + 23)) X* + 5T*
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and

5ps2(X) =5X° + (372 — 18T + 2+ Q5(T) (25 + 22)) X*
+T (=T%+ 31T — 9 — 2Q5(T) (25 + 28)) X3 + 5T3(T - 3)X
+ T2 (372 — 23T + 17 + Q5(T) (25 + 22)) X2 + 5T
These last two polynomials are irreducible over S since they are irreducible

over the fraction field of S. Denote by zy the canonical image of X in the
quotient ring V' = S[X]/ < 51 (X) >. Let

XO - 5quT1

Yo = —5 (28 + 322 + 425 +2) T'zg + 5 (328 — 22 + 225 + 1) T 1}
— (228 + 422 + 625 + 3) TP3 + 6 (323 + 22 + 425 + 2) T2}
—2(272 — 2% + 2625 + 13) T"2d + (423 — 222 + 225 + 1) T2}
— (222 + 422 + 625 + 3) T"x} + (828 + 622 + 1425 + 7) T®x2
+ (6628 + 3222 + 9825 +49) Tad — 4 (428 — 222 + 225 + 1) T2
— (28 + 228 + 325 — 1) T8z + (928 + 1322 + 2225 — 19) 7z
— (1728 + 5922 + 7625 + 13) TPz + (2228 — 1122 + 1125 + 8) Tz
—5(z8+25) T® — 5 (28 — 622 — 525+ 3) T" =5 (228 — 22 + 25+ 1) T°,

and
Zy = bAT.

We easily check that Py = [Xg,Yp, Zp] is a point in E(V)[5]. We compute
the points P; = [X;,Y;,Z;] = Py + ¢P for i € {1,--- ,4}. Since we will not
need the Y;’s afterwards, we will not write them down - the interested reader
can find their expression on my web page, see [7]. The only thing we need
to know is that they can be expressed as polynomials in Z [}, zs, T, 2|, and
we even can choose the Z;’s such that

Ly =2y =23 =24= 2.
Then

Xy = (23 — 328 — 225 — 1) Tz — 2 (728 — 1622 — 925 — 2) Tz}
+ (2223 — 2622 — 425 + 53) T3z{ + (828 — 422 + 425 + 7) T2z}
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+ (28 — 22) T7z — (24123 + 9822 + 10125 + 220) Tz
+ (14128 — 1022 + 8725 + 92) T23 — (2223 — 1228 + 825 + 7) T°x
— (5023 + 3322 + 3925 + 13) T3 + (2 — 32¢ + 2) T3
+ (37922 + 6722 + 8925 + 295) Tz§ — (828 — 728 + 425 + 10) T4
— (22428 + 2522 + 18325 + 108) T%23 — (22 + 28 + 225 + 1) T3
+2 (2023 + 3128 + 1825 — 24) Tz} + (2823 + 1223 + 3725 + 18) T
+ (28 = 28) TPz - (222 + 25 +2) T — (822 — 225 + 525 +9) i
+5 (2328 — 1922 + 425 + 9) TTzg — (7123 — 16825 — 9725 + 44) Tz
+ (5928 — 2722 + 3225 + 146) Txq + (1528 — 622 + 925 + 17) Tz
+2 (222 + 1622 + Tz + 15) T® — (2128 — 1822 + 325 + 4) T g
— (4128 + 11522 + 3725 + 82) T7 — 2 (2628 — 22 + 1425 + 46) T°,

Xy = (428 + 822 + 1225 + 11) T*a§ — (2625 + 2222 + 4825 + 79) Tz
— 2 (1622 + 722 + 2325 + 14) T?z} — (328 + 22 + 425 + 2) Tz
+ (322 + 322 + 425 + 5) Txd — (4923 + 2622 + 3125 + 64) T°x;
+ (20228 + 8522 + 4925 + 194) Tz} — (28 + 28 + 225 + 1) T
— (1622 + 1825 + 11) T?z§ + (11825 — 4122 + 3325 + 10) T«
— (228 — 222 — 325 — 2) T"x + (6128 + 422 — 25 + 16) T°4f
— (38328 + 14522 + 17125 + 336) T3 +5 (22 + 25 + 1) T°
+ (3028 + 2022 + 6225 + 39) T3z + (428 + 222 + 625 + 3) T
+ (28 + 222 + 325 + 4) T®zo — (1828 + 2122 + 3925 + 57) T
+ 2 (4822 + 2622 + Tazs + 97) TPz — (4723 + 3422 + Blzs + 168) T°xg
— (6628 + 2722 + 9325 + 59) Two — 2 (328 + 22 + 425 + 2) T
— (13728 — 4922 + 2225 — 55) T"a? — (423 + 4822 + 5225 + 61) T"
+2 (3328 + 1122 + 4dzs + 62) TS + (3722 + 1422 + 5125 + 33) T°
+ (3zg+252+425+2)T4,

X3 = — (428 + 822 + 1225 + 1) Tz + (2628 + 2227 + 4825 — 31) T’
+2 (1623 + 722 + 2325 +9) Tzg — (7425 — 8522 + 3325 + 23) T°x}
— (22 + 22 + 425 - 1) TSz + (522 — 1822 + 3125 — 33) Tz}
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+ (3622 + 15322 — 4925 + 145) T*zd + (323 + 22 + 425 + 2) T}
+ (223 + 1822 + 1825 + 7) T + (528 + 6222 + 25 + 17) T2
+ (71lz§ — 11523 + 2225 + 77) T'zf — (23 + 222 + 325 — 1) TP
— (22 +528 + 325 + 1) T2} — (3328 + 3222 + 6225 + 23) T3z
— (428 + 222 + 625 + 3) T2} + (2623 — 21222 + 17125 — 165) Tz
+ (1823 + 2127 + 3925 — 18) Tz + (428 + 4822 + 5225 — 9) T
+ (4722 + 3422 + 8Lz — 87) TPz + (6623 + 2722 + 9325 + 34) Tz
+2 (323 + 25 + 425 + 2) T?zo — 2 (4823 + 2622 + T4zs — 23) Tz
—5 (22 +25) T® — (322 + 22 + 45 +2) T* + (23 + 22 + 225 + 1) T}
—2(3323 + 1122 + 4425 — 18) T® — (3723 + 1422 + 5125 + 18) T°,

and

Xo=— (28 = 322 — 225 — 1) Tz} + 2 (728 — 1622 — 925 — 7) T
— (2228 — 2622 — 425 - 57) T3z — (822 — 422 + 425 — 3) T}
+ (2025 — 1423 + 825 + 1) T®j + (323 — 14022 + 10125 — 119) T
— (9722 — 5422 + 8725 — 5) Tz} — (328 — 22 — 2) T2z}
+ (623 — 1122 + 3925 + 26) T2z3 + (2 + 22 + 225 + 1) T84
+ (15828 — 4122 + 18325 + 75) T°a — (2528 + 922 + 3725 + 19) T2
— (2223 — 2902¢ + 8925 — 206) T°z3 + 2 (1328 + 222 — 1825 — 42) T4
+ (1128 — 422 + 425 — 6) T3 - (5928 — 2722 + 3225 — 114) Tz
— 5 (2328 — 1922 + 425 — 5) 7o + (2123 — 1822 + 325 — 1) Tz,
+ (7128 — 16825 — 9725 — 141) Tzq + (722 — 322 + 525 — 4) T®
— (1528 — sz‘f +925 — 8) Tz + 2 (923 — 522 — Tz5 +8) T®
— (B -2 -2+ 1) T — (8 — 22) TPz — (22 — 23) T7}
— (7823 +4z5 — 37z5 +45) T7 + 2 (1523 — 1222 + 1425 — 32) T

We now compute
(Xi+ 25X + B X+ 22X + 44X’
= (25 + 28 — 2)° T® (T — A5)"' (T - Bs)*,

where As = 8 + bz5 + 525 and Bs = 3 — 525 — 328. Consider any field K
of characteristic different from 5. We have a canonical mapping from Z [g]
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into this field which canonically extends to mappings from R to K[T] and
from S to K(¢5)[T]. Since no inversion was required in all the computations
done previously, the formulas hold if we replace the ring R by the ring K[T].
Thus, keeping the notation from Section 3, we get that

ARy = (G + ¢ —2)° TP (T —as)" (T —B5)° .

Now, by specializing to ¢ € K such that Ps(t) # 0 and remarking that Ar,
T, T — a5 and T — f5 remain non-zero under specialization, we get that R,
is non-zero, and that it is a fifth power in K((5) if and only if %:—:;—51 is. O

Proof of Theorem 6. The idea of the proof is exactly the same as in
the previous proof, and we refer to it for the notation. The computational
difficulty here is to find a yg such that [zg, yo, 1] is a point on the curve. The
method that we used was the following: MAGMA found easily such a yq for
the elliptic curve

Er: 2+ (1 +T~Toy+ (T? -T2y = 2% + (72 - T%)2?

over T, (T), where F, was a prime finite field with p elements, and such that
p = 1 [7], so that the field had primitive 7-th roots of unity. The result

was of the form Y{T)?i(f{}l_}g}' B ?), where Y (T') was a polynomial in T with

coefficients in F,(zo) of degree 18. We then decomposed the polynomial
Y (T) into 7 unique polynomials Y;(T') over [F, such that

We looked afterwards at the same curve Er, defined this time over Q(z7)[T],
and specialized it at 19 different places by taking T = T; € Z. MAGMA
found easily the two different yo;x corresponding to our given zor;. We
reduced these yo,7; 5 modulo our previous prime p, and kept the one cor-
responding to the yp we had previously found. We denote it by yr,. This

being done, for i € {0,--- , 18}, we decomposed
TAtyry : i
r = M5iL0. T »
T5(T; — 1)(T; = Br) 2 Missh

1=0
where 7);; € Q(z7). For i € {0--- ,6}, we then solved the matrix equations
10, €0,i
— M £ ' s

8, €183
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where M is the Vandermonde matrix
M = [Q?]cgs,jgm'

Finally we defined for 7 € {0,--- , 6}, the polynomials

18
YJ (1) = z ejiT? € Q(z7)(T]

§=0
and

6

YHT) =Y Y (T)zh € Qar) (w0)(T).

=0

The latter polynomial was in Z[z7, g, T|. We then checked that the point
Py = [73:0/3%, YHT)TY(T — 1)8(T - A7)(T - Br)?, 7/_\%]

was in fact a point on the elliptic curve Er, necessarily of 7-torsion. We give
here the polynomial Y (T):

YH(T) = 7dezl + dszl + daT(T — 1)zd + dsT?(T — 1)}
+dTHT = 1)%2 + diTHT - 1) 50 + 1do T3 (T — 1),

where

de = (325 — 2§ + 323 — 22+ 220+ 1) T3 — 028 4+ 528 — 1123 4+ 322 — 62, — 3
— (1927 — 727 + 2128 — 527 + 1427 + 7) T?
+2(1829 — 427 + 1423 — 322 + 1027, +5) T,

ds = (ﬁz;’ - 223 + 428 — 422 4+ 227 + 1) i
— (3725 — 1027 + 2028 — 2722 + 1027 + 5) T®
— (7325 — 6427 + 12823 — 927 + 6427 + 32) T°
+ (75525 — 40127 + 92123 — 23522 + 52027 + 260) T*
— (134925 — 69027 + 161823 — 42122 4 928z, + 464) T°
+ (84327 — 39327 + 98928 — 24722 + 59627 + 298) T*?
— (4125 — 1627 + 4623 — 1122 + 3027 + 15) T
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— 8825 + 4127 — 10323 + 2627 — 6227 — 31,

dy = (925 — 378 + 1323 + 2% + 1027 + 5) T®
— (11725 — 4623 + 16223 — 23 + 11627 + 58) T7
+ (50523 — 23627 + 62623 — 11527 + 39027 + 195) T°
— 3 (19023 — 11724 + 24128 — 6627 + 12427 + 62) T°
— (133623 — 37324 + 141123 — 29822 + 103827 + 519) T*

+ (359922 — 158027 + 415423 — 102527 + 257427 + 1287) T°

— (287122 — 126527 + 332123 — 81527 + 205627 + 1028) T°
+ (61323 — 26527 + 70528 — 17327 + 44027 + 220) T

+ 11325 — 4723 + 12923 — 3122 + 8227 + 41,

dy = (625 — 227 + 423 — 425 + 227 + 1) T°
— (10323 — 3227 + 9223 — 4327 + 6027 + 30) T®
+2 (36725 — 12027 + 39423 — 9327 + 27427 + 137) T”
— (285523 — 111527 + 321728 — 75322 + 210227 + 1051) T°
+ (632723 — 272523 + 724923 — 180327 + 452427 + 2262) T°
— 7 (103523 — 4702} + 120223 — 30327 + 73227 + 366) T*

+ (339925 — 139924 + 386923 — 92927 + 247027 + 1235) T°

+2 (10322 — 4627 + 12023 — 2922 + Tdz7 + 37) T?

— (30528 — 13927 + 35523 — 8927 + 21627 + 108) T

— 8820 + 4127 — 10323 + 2627 — 6227 — 31,

dy = (525 — 424 + 823 — 22 + 427 +2) T®
— 7 (1128 — 927 4+ 1725 — 322 + 827 +4) T7
+7 (6625 — 4927 + 8923 — 2627 + 4027 4 20) T°
— (124823 — 72427 + 151823 — 45427 + 79427 + 397) T°
+ (109323 — 46724 + 123523 — 32522 + 76827 + 384) T*
+ (86523 — 52427 + 109023 — 29922 + 56627 + 283) T°
— (153223 — 61823 + 174023 — 41023 + 112227 + 561) T*
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+ (15127 — 11127 + 20128 — 6122 + 9027 + 45) T
+ 22323 — 10723 + 26325 — 6722 + 15627 + 78,

di= (328 — 28 +228 22 + 2y +4) T7
— (5323 + 827 + 4023 + 222 + 2027 + 59) T®
+7(3825 + 1427 + 2223 + 1827 + 1227 + 41) T°

— (30627 + 30427 + 823 + 45427 — 5927 + 499) T*
— (42823 — 50227 + 78023 — 61222 + 60727 — 162) T®
+ (63327 — 23227 + 71623 — 17727 + 49827 + 235) T2

+ (6928 — 11427 + 16528 — 21422 + 1982, — 111) T

~ 15625 + 14327 — 23723 + 13927 — 1572749,

do=(B+2+2+1)T° - (13282 + 27 + 1223 + 22 + 92, + 11) T
+ (4727 + 327 + 3923 + 1427 + 2227 +40) T°
— (4923 + 1627 + 2723 + 4027 + 627 + 56) T?
+ (1025 + 2225 — 1123 + 4022 — 192, + 33) T
+ 322 — 1127 + 1123 — 1422 + 927 — 8.

Now, in the same way as we did in the previous proof, we are able to
compute the points P; = [X;,Y;, Z;] for i € {0,--- ,6}. If we take

Z;="T0%,
then
X;,Y; € Z[z,T).

We do not write here the expressions for the X;’s and Y;’s, but the interested
reader can find them on my homepage [7]. We can now compute the quantity
(Xo + 22X + ---z?ixs)T for i € {0,--- ,6}. For 7 = 3, we find that

(X[} F z%X; b 'Z—}SX(;)
= DIT®(T - 1)% (T - A7) (T - B)® (T - )%,
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with D) = 75 + 24 — 222 — 527 — 2. As we saw in the case I = 5, this equality
is valid also in the ring K[T'], which leads to

TAM Ry = 63T%(T - 1)% (T — a7)*" (T - 1) (T — v0)*°,

with 87 = 3 + (F — 2¢2 — 5(7 — 2. If we specialize to ¢ € K, we remark that
none of the factors can be 0, since Ay = t7(t—1)7(t —az)(t — B7) (t—y7) # 0.
This means that Rz # 0, and therefore, it is a 7-th power in K((7) if and
only if the group E(K({7))[7] is isomorphic to (Z/ 7Z)?. The result follows
immediately.
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