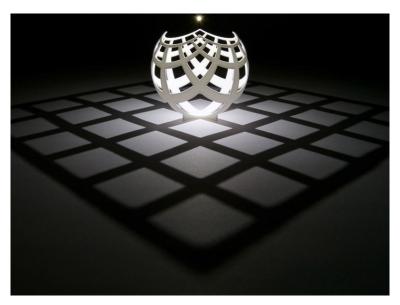
The Mathematics of Maps – Lecture 4



Mercator projection

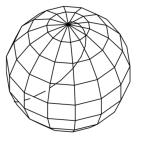
• Importance: Navigation.

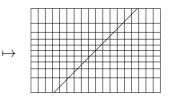
- Importance: Navigation.
- Conformal map, i.e. angles are preserved.

- Importance: Navigation.
- Conformal map, i.e. angles are preserved.
- Here's a fun little puzzle: Mercator Puzzle

Rhumb line = path of constant compass bearing on the sphere, i.e. have constant angle with the corresponding parallel & meridian.

Rhumb line = path of constant compass bearing on the sphere, i.e. have constant angle with the corresponding parallel & meridian.

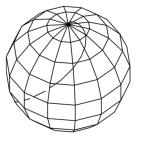


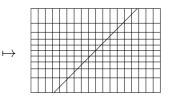


parallels of latitude meridians of longitude \mapsto vertical lines rhumb lines

- \mapsto horizontal lines
- \mapsto straight lines

Rhumb line = path of constant compass bearing on the sphere, i.e. have constant angle with the corresponding parallel & meridian.

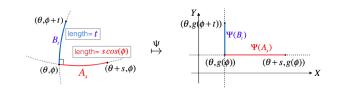




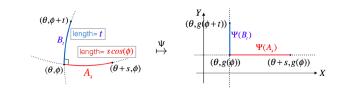
parallels of latitude \mapsto horizontal lines meridians of longitude \mapsto vertical lines rhumb lines

 \mapsto straight lines

The last one makes the Mercator map useful for navigation.



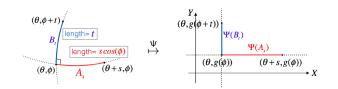
$$\lambda_{p} = \lim_{s \to 0} \frac{L(\Psi(A_{s}))}{L(A_{s})} = \sec(\phi), \quad \lambda_{m} = \lim_{t \to 0} \frac{L(\Psi(B_{t}))}{L(B_{t})} = |g'(\phi)|.$$



$$\lambda_{p} = \lim_{s \to 0} \frac{L(\Psi(A_{s}))}{L(A_{s})} = \sec(\phi), \quad \lambda_{m} = \lim_{t \to 0} \frac{L(\Psi(B_{t}))}{L(B_{t})} = |g'(\phi)|.$$

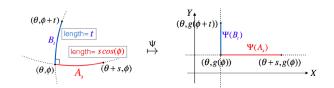
Conformality means $\lambda_{p} = \lambda_{m}$.

(



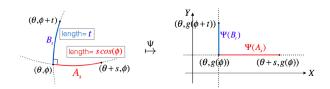
$$\lambda_{p} = \lim_{s \to 0} \frac{L(\Psi(A_{s}))}{L(A_{s})} = \sec(\phi), \quad \lambda_{m} = \lim_{t \to 0} \frac{L(\Psi(B_{t}))}{L(B_{t})} = |g'(\phi)|.$$

Conformality means $\lambda_{p} = \lambda_{m}$. Requiring $g(0) = 0, g'(\phi) > 0,$
 $g'(\phi) = \sec(\phi)$



$$\lambda_{p} = \lim_{s \to 0} \frac{L(\Psi(A_{s}))}{L(A_{s})} = \sec(\phi), \quad \lambda_{m} = \lim_{t \to 0} \frac{L(\Psi(B_{t}))}{L(B_{t})} = |g'(\phi)|.$$

Conformality means $\lambda_{p} = \lambda_{m}$. Requiring $g(0) = 0, g'(\phi) > 0,$
 $g'(\phi) = \sec(\phi) \implies g(\phi) = \ln(\sec \phi + \tan \phi).$



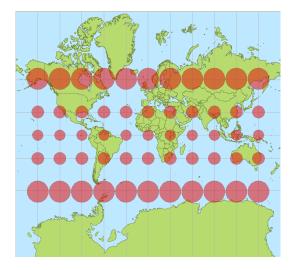
$$\lambda_{p} = \lim_{s \to 0} \frac{L(\Psi(A_{s}))}{L(A_{s})} = \sec(\phi), \quad \lambda_{m} = \lim_{t \to 0} \frac{L(\Psi(B_{t}))}{L(B_{t})} = |g'(\phi)|.$$

Conformality means $\lambda_{p} = \lambda_{m}$. Requiring $g(0) = 0, g'(\phi) > 0$,

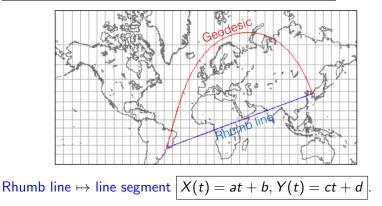
$$g'(\phi) = \sec(\phi) \quad \Rightarrow \quad g(\phi) = \ln(\sec \phi + \tan \phi).$$

$$\Psi_M: \begin{cases} X = \theta, & -\pi \le \theta \le \pi \\ Y = \ln(\sec \phi + \tan \phi), & -\frac{\pi}{2} \le \phi \le \frac{\pi}{2} \end{cases}.$$

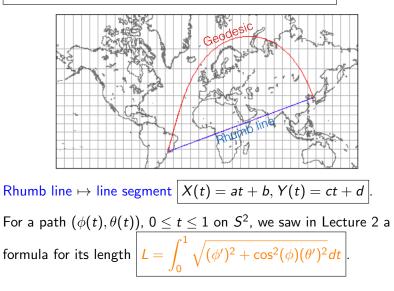
Distortion in the Mercator projection



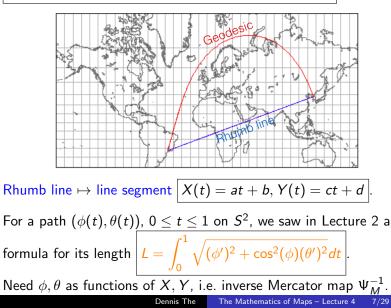
Q: How can we find the distance along a rhumb line?



Q: How can we find the distance along a rhumb line?



Q: How can we find the distance along a rhumb line?



Given
$$\Psi_M$$
:
$$\begin{cases} X = \theta \\ Y = \ln(\sec(\phi) + \tan(\phi)) \end{cases}$$
, what is Ψ_M^{-1} ?

Given
$$\Psi_M$$
:
$$\begin{cases} X = \theta \\ Y = \ln(\sec(\phi) + \tan(\phi)) \end{cases}$$
, what is Ψ_M^{-1} ?
Using some trig. trickery... $e^Y = \sec(\phi) + \tan(\phi) = \frac{1 + \sin(\phi)}{\cos(\phi)} = \frac{1 - \cos(\phi + \frac{\pi}{2})}{\sin(\phi + \frac{\pi}{2})} = \frac{2\sin^2(\frac{\phi}{2} + \frac{\pi}{4})}{2\sin(\frac{\phi}{2} + \frac{\pi}{4})\cos(\frac{\phi}{2} + \frac{\pi}{4})} = \tan(\frac{\phi}{2} + \frac{\pi}{4}).$

Given
$$\Psi_M$$
:
$$\begin{cases} X = \theta \\ Y = \ln(\sec(\phi) + \tan(\phi)) \end{cases}$$
, what is Ψ_M^{-1} ?
Using some trig. trickery... $e^Y = \sec(\phi) + \tan(\phi) = \frac{1 + \sin(\phi)}{\cos(\phi)} = \frac{1 - \cos(\phi + \frac{\pi}{2})}{\sin(\phi + \frac{\pi}{2})} = \frac{2\sin^2(\frac{\phi}{2} + \frac{\pi}{4})}{2\sin(\frac{\phi}{2} + \frac{\pi}{4})\cos(\frac{\phi}{2} + \frac{\pi}{4})} = \tan(\frac{\phi}{2} + \frac{\pi}{4})$. Thus,
$$\Psi_M^{-1}: \qquad \begin{cases} \theta = X \\ \phi = 2\arctan(e^Y) - \frac{\pi}{2} \end{cases}$$

$$\Psi_{M}^{-1}: \begin{cases} \theta = X \\ \phi = 2 \arctan(e^{Y}) - \frac{\pi}{2} \end{cases}, \text{Rhumb} \begin{cases} X(t) = at + b \\ \text{line:} \end{cases}$$

$$\Psi_{M}^{-1}: \begin{cases} \theta = X \\ \phi = 2 \arctan(e^{Y}) - \frac{\pi}{2} \end{cases}, \text{ Rhumb } \begin{cases} X(t) = at + b \\ Y(t) = ct + d \end{cases}$$

$$\Rightarrow \phi' = rac{2e^Yc}{1+e^{2Y}}, \quad \theta' = a, \quad \cos(\phi) = rac{2e^Y}{1+e^{2Y}}.$$

$$\Psi_{M}^{-1}: \begin{cases} \theta = X \\ \phi = 2 \arctan(e^{Y}) - \frac{\pi}{2} \end{cases}$$
, Rhumb
line:
$$\begin{cases} X(t) = at + b \\ Y(t) = ct + d \end{cases}$$

$$\Rightarrow \quad \phi' = \frac{2e^{Y}c}{1+e^{2Y}}, \quad \theta' = a, \quad \cos(\phi) = \frac{2e^{Y}}{1+e^{2Y}}.$$

$$L = \int_0^1 \sqrt{(\phi')^2 + \cos^2(\phi)(\theta')^2} dt = \sqrt{a^2 + c^2} \int_0^1 \frac{2e^Y}{1 + e^{2Y}} dt$$
$$= \dots = \left[\frac{2\sqrt{a^2 + c^2}}{c} (\arctan(e^{c+d}) - \arctan(e^d)) \right].$$

$$\Psi_{M}^{-1}: \begin{cases} \theta = X \\ \phi = 2 \arctan(e^{Y}) - \frac{\pi}{2} \end{cases}$$
, Rhumb
line:
$$\begin{cases} X(t) = at + b \\ Y(t) = ct + d \end{cases}$$

$$\Rightarrow \quad \phi' = \frac{2e^{Y}c}{1+e^{2Y}}, \quad \theta' = a, \quad \cos(\phi) = \frac{2e^{Y}}{1+e^{2Y}}.$$

$$L = \int_0^1 \sqrt{(\phi')^2 + \cos^2(\phi)(\theta')^2} dt = \sqrt{a^2 + c^2} \int_0^1 \frac{2e^Y}{1 + e^{2Y}} dt$$
$$= \dots = \left[\frac{2\sqrt{a^2 + c^2}}{c} (\arctan(e^{c+d}) - \arctan(e^d)) \right].$$

(When
$$c
ightarrow 0$$
, we recover $L = rac{2e^d}{1+e^{2d}} = \cos(\phi)$.)

$$\Psi_{M}^{-1}: \begin{cases} \theta = X \\ \phi = 2 \arctan(e^{Y}) - \frac{\pi}{2} \end{cases}$$
, Rhumb
line:
$$\begin{cases} X(t) = at + b \\ Y(t) = ct + d \end{cases}$$

$$\Rightarrow \quad \phi' = \frac{2e^{Y}c}{1+e^{2Y}}, \quad \theta' = \mathbf{a}, \quad \cos(\phi) = \frac{2e^{Y}}{1+e^{2Y}}.$$

$$L = \int_0^1 \sqrt{(\phi')^2 + \cos^2(\phi)(\theta')^2} dt = \sqrt{a^2 + c^2} \int_0^1 \frac{2e^Y}{1 + e^{2Y}} dt$$
$$= \dots = \left[\frac{2\sqrt{a^2 + c^2}}{c} (\arctan(e^{c+d}) - \arctan(e^d)) \right].$$

(When $c \to 0$, we recover $L = \frac{2e^d}{1+e^{2d}} = \cos(\phi)$.) This formula is valid on the unit sphere S^2 . On a sphere of radius R, this length would be rescaled by R.

Stereographic projection

Stereographic projection (from north pole)

Stereographic projection (from north pole)

parallels of latitude \mapsto circles centred at 0 meridians of longitude \mapsto rays emanating from 0

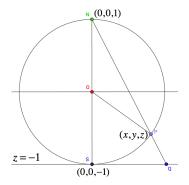
Stereographic projection (from north pole)

 $\begin{array}{rcl} \mbox{parallels of latitude} & \mapsto & \mbox{circles centred at 0} \\ \mbox{meridians of longitude} & \mapsto & \mbox{rays emanating from 0} \end{array}$

(Note: Viewed from above, East ~> West is a clockwise rotation in the map.)

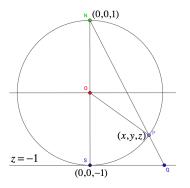
Geometric construction

On S^2 , put a light source at the north pole, and cast the shadow of $\vec{P} \in S^2$ onto the plane tangent at the south pole.



Geometric construction

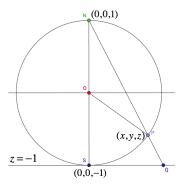
On S^2 , put a light source at the north pole, and cast the shadow of $\vec{P} \in S^2$ onto the plane tangent at the south pole.



Line \vec{NP} intersects z = -1 plane at \vec{Q} : $(\frac{2x}{1-z}, \frac{2y}{1-z}, -1)$.

Geometric construction

On S^2 , put a light source at the north pole, and cast the shadow of $\vec{P} \in S^2$ onto the plane tangent at the south pole.



Line \vec{NP} intersects z = -1 plane at \vec{Q} : $(\frac{2x}{1-z}, \frac{2y}{1-z}, -1)$. Hence,

$$\Psi_N: \quad X = \frac{2x}{1-z}, \quad Y = \frac{2y}{1-z}$$

Use spherical polar coords $(x, y, z) = (\cos \phi \cos \theta, \cos \phi \sin \theta, \sin \phi)$ to write Ψ_N .

Polar coordinate formula

Use spherical polar coords $(x, y, z) = (\cos \phi \cos \theta, \cos \phi \sin \theta, \sin \phi)$ to write Ψ_N . Then $X = \frac{2 \cos \phi \cos \theta}{1 - \sin \phi}$, $Y = \frac{2 \cos \phi \sin \theta}{1 - \sin \phi}$, and

$$\Rightarrow \qquad R = \sqrt{X^2 + Y^2} = \frac{2\cos\phi}{1 - \sin\phi} = \frac{2\cos\phi(1 + \sin\phi)}{1 - \sin^2\phi}$$

Polar coordinate formula

Use spherical polar coords $(x, y, z) = (\cos \phi \cos \theta, \cos \phi \sin \theta, \sin \phi)$ to write Ψ_N . Then $X = \frac{2 \cos \phi \cos \theta}{1 - \sin \phi}$, $Y = \frac{2 \cos \phi \sin \theta}{1 - \sin \phi}$, and

$$\Rightarrow \qquad R = \sqrt{X^2 + Y^2} = \frac{2\cos\phi}{1 - \sin\phi} = \frac{2\cos\phi(1 + \sin\phi)}{1 - \sin^2\phi}$$

$$\Psi_N: \quad R = 2(\sec \phi + \tan \phi), \quad \Theta = \theta$$

Polar coordinate formula

Use spherical polar coords $(x, y, z) = (\cos \phi \cos \theta, \cos \phi \sin \theta, \sin \phi)$ to write Ψ_N . Then $X = \frac{2 \cos \phi \cos \theta}{1 - \sin \phi}$, $Y = \frac{2 \cos \phi \sin \theta}{1 - \sin \phi}$, and

$$\Rightarrow \qquad R = \sqrt{X^2 + Y^2} = \frac{2\cos\phi}{1 - \sin\phi} = \frac{2\cos\phi(1 + \sin\phi)}{1 - \sin^2\phi}$$

$$\Psi_N: \quad R=2(\sec\phi+ an\phi), \quad \Theta= heta$$

Towards north pole, $\lim_{\phi \to \frac{\pi}{2}^{-}} R \to \infty$. (High distortion.) Towards south pole, $\lim_{\phi \to -\frac{\pi}{2}^{+}} R \to 0$.

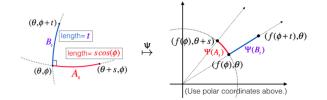
Stereographic projection is conformal

Halley (1695): Stereographic projection is conformal.

Stereographic projection is conformal

Halley (1695): Stereographic projection is conformal.

For a map $\Psi: R = f(\phi), \Theta = \theta$, we calculated scale factors

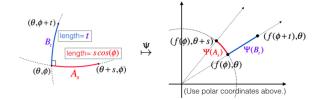


$$\lambda_{p} = \lim_{s \to 0} \frac{L(\Psi(A_{s}))}{L(A_{s})} = f(\phi) \sec(\phi), \quad \lambda_{m} = \lim_{t \to 0} \frac{L(\Psi(B_{t}))}{L(B_{t})} = |f'(\phi)|.$$

Stereographic projection is conformal

Halley (1695): Stereographic projection is conformal.

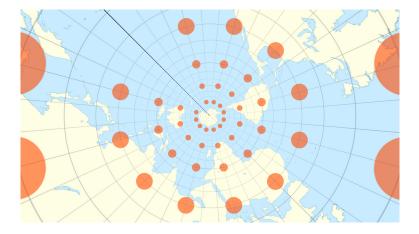
For a map $\Psi: R = f(\phi), \Theta = heta$, we calculated scale factors



$$\lambda_{p} = \lim_{s \to 0} \frac{L(\Psi(A_{s}))}{L(A_{s})} = f(\phi) \sec(\phi), \quad \lambda_{m} = \lim_{t \to 0} \frac{L(\Psi(B_{t}))}{L(B_{t})} = |f'(\phi)|.$$

Conformality means $\lambda_p = \lambda_m$. For $f(\phi) = 2(\sec \phi + \tan \phi)$, we can verify this is true. (Note $f'(\phi) > 0$ on $(-\frac{\pi}{2}, \frac{\pi}{2})$.)

Distortion in the stereographic projection



Circles are mapped to "circles"

Definition

A circle on S^2 is the intersection of a plane Π in \mathbb{R}^3 with S^2 . A "circle" in the plane is either an ordinary circle or a line.

Circles are mapped to "circles"

Definition

A circle on S^2 is the intersection of a plane Π in \mathbb{R}^3 with S^2 . A "circle" in the plane is either an ordinary circle or a line.

Theorem

Any circle on S^2 is mapped by Ψ_N to a "circle" in the plane.

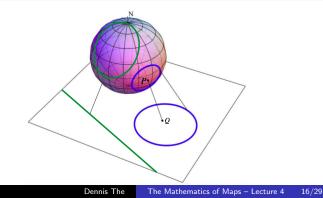
Circles are mapped to "circles"

Definition

A circle on S^2 is the intersection of a plane Π in \mathbb{R}^3 with S^2 . A "circle" in the plane is either an ordinary circle or a line.

Theorem

Any circle on S^2 is mapped by Ψ_N to a "circle" in the plane.



IDEA: Invert
$$\Psi_N$$
: $X = \frac{2x}{1-z}, Y = \frac{2y}{1-z}$

IDEA: Invert
$$\Psi_N$$
: $X = \frac{2x}{1-z}$, $Y = \frac{2y}{1-z}$ to get

$$P = (x, y, z) = \left(\frac{4X}{X^2 + Y^2 + 4}, \frac{4Y}{X^2 + Y^2 + 4}, \frac{X^2 + Y^2 - 4}{X^2 + Y^2 + 4}\right) \in S^2.$$

IDEA: Invert
$$\Psi_N$$
: $X = \frac{2x}{1-z}$, $Y = \frac{2y}{1-z}$ to get

$$P = (x, y, z) = \left(\frac{4X}{X^2 + Y^2 + 4}, \frac{4Y}{X^2 + Y^2 + 4}, \frac{X^2 + Y^2 - 4}{X^2 + Y^2 + 4}\right) \in S^2.$$

If $P \in \Pi \cap S^2$, then ax + by + cz = d.

IDEA: Invert
$$\Psi_N$$
: $X = \frac{2x}{1-z}$, $Y = \frac{2y}{1-z}$ to get

$$P = (x, y, z) = \left(\frac{4X}{X^2 + Y^2 + 4}, \frac{4Y}{X^2 + Y^2 + 4}, \frac{X^2 + Y^2 - 4}{X^2 + Y^2 + 4}\right) \in S^2.$$

If $P \in \Pi \cap S^2$, then ax + by + cz = d. Plug above in to get

$$4(aX + bY) + c(X^{2} + Y^{2} - 4) = d(X^{2} + Y^{2} + 4)$$

IDEA: Invert
$$\Psi_N$$
: $X = \frac{2x}{1-z}$, $Y = \frac{2y}{1-z}$ to get

$$P = (x, y, z) = \left(\frac{4X}{X^2 + Y^2 + 4}, \frac{4Y}{X^2 + Y^2 + 4}, \frac{X^2 + Y^2 - 4}{X^2 + Y^2 + 4}\right) \in S^2.$$

If $P \in \Pi \cap S^2$, then ax + by + cz = d. Plug above in to get

$$4(aX + bY) + c(X^{2} + Y^{2} - 4) = d(X^{2} + Y^{2} + 4)$$

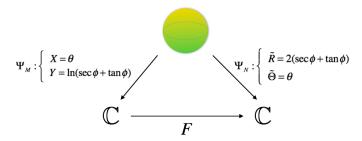
This is the eqn of a circle if $c \neq d$ and a line if c = d.

Circles images

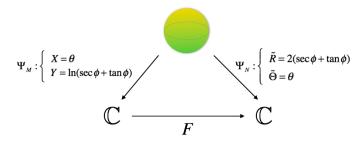
From Mercator to stereographic projection

Identify the plane with \mathbb{C} , i.e. $Z = X + iY = Re^{i\Theta}$ and similarly for tilded variables.

Identify the plane with \mathbb{C} , i.e. $Z = X + iY = Re^{i\Theta}$ and similarly for tilded variables.



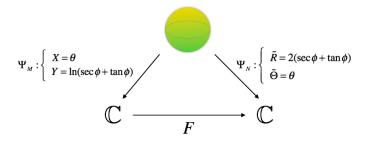
Identify the plane with \mathbb{C} , i.e. $Z = X + iY = Re^{i\Theta}$ and similarly for tilded variables.



The function F is described in real coordinates as

$$\tilde{R} = 2e^{Y}, \quad \tilde{\Theta} = X$$

Identify the plane with \mathbb{C} , i.e. $Z = X + iY = Re^{i\Theta}$ and similarly for tilded variables.



The function F is described in real coordinates as

$$\tilde{R} = 2e^{Y}, \quad \tilde{\Theta} = X$$

Using the *complex* exponential, we have

$$\tilde{Z} = \tilde{R}e^{i\tilde{\Theta}} = 2e^{Y}e^{iX} = 2e^{i(X-iY)} = 2e^{i\overline{Z}}.$$

Given $F : \mathbb{C} \to \mathbb{C}$, define \mathbb{C} -differentiability via the usual formula $F'(a) = \lim_{h \to 0} \frac{F(a+h) - F(a)}{h}.$

Given $F : \mathbb{C} \to \mathbb{C}$, define \mathbb{C} -differentiability via the usual formula $F'(a) = \lim_{h \to 0} \frac{F(a+h) - F(a)}{h}$. BUT, this is much stronger than \mathbb{R} -differentiability of F considered as a map $\mathbb{R}^2 \to \mathbb{R}^2$.

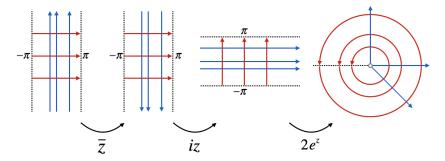
Given $F : \mathbb{C} \to \mathbb{C}$, define \mathbb{C} -differentiability via the usual formula $F'(a) = \lim_{h \to 0} \frac{F(a+h) - F(a)}{h}$. BUT, this is much stronger than \mathbb{R} -differentiability of F considered as a map $\mathbb{R}^2 \to \mathbb{R}^2$.

FACT: When F' exists and is nonzero, F is a conformal mapping.

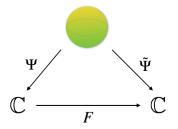
Given $F : \mathbb{C} \to \mathbb{C}$, define \mathbb{C} -differentiability via the usual formula $F'(a) = \lim_{h \to 0} \frac{F(a+h) - F(a)}{h}$. BUT, this is much stronger than \mathbb{R} -differentiability of F considered as a map $\mathbb{R}^2 \to \mathbb{R}^2$.

FACT: When F' exists and is nonzero, F is a conformal mapping.

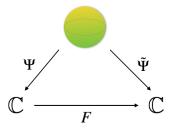
The Mercator-to-stereographic map is conformal and decomposes:



Given a conformal map Ψ from the sphere to the plane, we can use a \mathbb{C} -differentiable F (with $F' \neq 0$) to produce a new map $\tilde{\Psi}$:



Given a conformal map Ψ from the sphere to the plane, we can use a \mathbb{C} -differentiable F (with $F' \neq 0$) to produce a new map $\tilde{\Psi}$:



Möbius transformations $F(z) = \frac{az+b}{cz+d}$ form a wonderful class of \mathbb{C} -differentiable (hence conformal) maps. \bullet Möbius transformations revealed

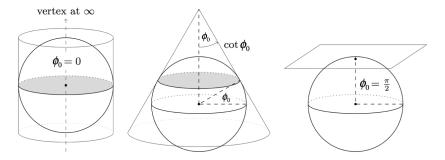
A family of conformal maps

Here's another way from Mercator to stereographic projection:

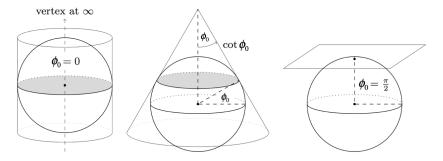
The Mercator and stereographic projections, and many in between

Lambert (1772): Gave a family of conic conformal map projections with Mercator and stereographic projections as limiting cases.

Lambert (1772): Gave a family of conic conformal map projections with Mercator and stereographic projections as limiting cases.

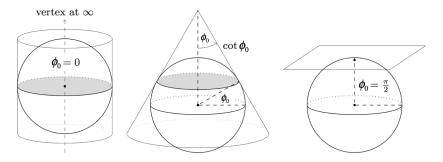


Lambert (1772): Gave a family of conic conformal map projections with Mercator and stereographic projections as limiting cases.



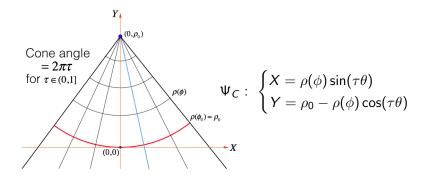
Also allow $\phi_0 \in [-\frac{\pi}{2}, 0)$, i.e. cone vertex appears below the sphere. $\phi_0 = -\frac{\pi}{2} \rightsquigarrow$ stereographic projection from the north pole.

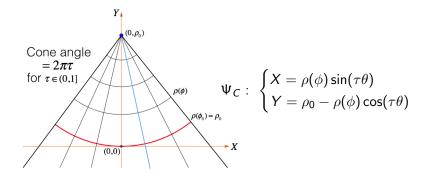
Lambert (1772): Gave a family of conic conformal map projections with Mercator and stereographic projections as limiting cases.



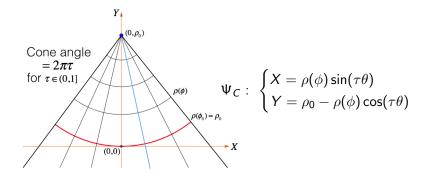
Also allow $\phi_0 \in [-\frac{\pi}{2}, 0)$, i.e. cone vertex appears below the sphere. $\phi_0 = -\frac{\pi}{2} \rightsquigarrow$ stereographic projection from the north pole.

Let's cut open the cone and flatten it. How to specify the map?

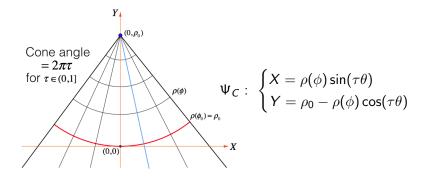




• Meridians: uniformly spaced rays emanating from $(0, \rho_0)$. Thus, $\theta = 0$ meridian is along the Y-axis.



- Meridians: uniformly spaced rays emanating from $(0, \rho_0)$. Thus, $\theta = 0$ meridian is along the Y-axis.
- Parallels: Circular arc centred at (0, ρ₀) of radius ρ(φ) (for latitude φ). Pick φ₀ such that ρ(φ₀) = ρ₀.



- Meridians: uniformly spaced rays emanating from $(0, \rho_0)$. Thus, $\theta = 0$ meridian is along the Y-axis.
- Parallels: Circular arc centred at (0, ρ₀) of radius ρ(φ) (for latitude φ). Pick φ₀ such that ρ(φ₀) = ρ₀.
- Require $\rho(\frac{\pi}{2}) = 0$ and $\rho'(\phi) < 0$.

General conic conformal projections

Under Ψ_C , meridians and parallels are orthogonal.

General conic conformal projections

Under Ψ_C , meridians and parallels are orthogonal. Scale factors:

$$\lambda_{\rho} = \lim_{s \to 0} \frac{\rho(\phi) \frac{s}{2\pi} (2\pi\tau)}{s \cos(\phi)} = \rho(\phi)\tau \sec(\phi)$$
$$\lambda_{m} = \lim_{t \to 0} \left| \frac{\rho(\phi+t) - \rho(\phi)}{t} \right| = |\rho'(\phi)| = -\rho'(\phi)$$

General conic conformal projections

Under Ψ_C , meridians and parallels are orthogonal. Scale factors:

$$\lambda_{\rho} = \lim_{s \to 0} \frac{\rho(\phi) \frac{s}{2\pi} (2\pi\tau)}{s \cos(\phi)} = \rho(\phi)\tau \sec(\phi)$$
$$\lambda_{m} = \lim_{t \to 0} \left| \frac{\rho(\phi+t) - \rho(\phi)}{t} \right| = |\rho'(\phi)| = -\rho'(\phi)$$

Conformality $\lambda_{\rho} = \lambda_m$ yields the DE:

$$ho'(\phi) = -
ho(\phi) au \operatorname{sec}(\phi), \qquad
ho(\phi_0) =
ho_0.$$

General conic conformal projections

Under Ψ_C , meridians and parallels are orthogonal. Scale factors:

$$\lambda_{\rho} = \lim_{s \to 0} \frac{\rho(\phi) \frac{s}{2\pi} (2\pi\tau)}{s \cos(\phi)} = \rho(\phi)\tau \sec(\phi)$$
$$\lambda_{m} = \lim_{t \to 0} \left| \frac{\rho(\phi+t) - \rho(\phi)}{t} \right| = |\rho'(\phi)| = -\rho'(\phi)$$

Conformality $\lambda_p = \lambda_m$ yields the DE:

$$ho'(\phi) = -
ho(\phi) au \operatorname{sec}(\phi), \qquad
ho(\phi_0) =
ho_0.$$

Solving yields

$$\rho(\phi) = \rho_0 \left(\frac{\sec \phi_0 + \tan \phi_0}{\sec \phi + \tan \phi}\right)^{\tau}.$$

General conic conformal projections

Under Ψ_C , meridians and parallels are orthogonal. Scale factors:

$$\lambda_{\rho} = \lim_{s \to 0} \frac{\rho(\phi) \frac{s}{2\pi} (2\pi\tau)}{s \cos(\phi)} = \rho(\phi)\tau \sec(\phi)$$
$$\lambda_{m} = \lim_{t \to 0} \left| \frac{\rho(\phi+t) - \rho(\phi)}{t} \right| = |\rho'(\phi)| = -\rho'(\phi)$$

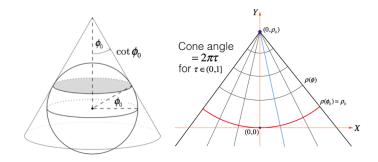
Conformality $\lambda_p = \lambda_m$ yields the DE:

$$ho'(\phi) = -
ho(\phi) au \operatorname{sec}(\phi), \qquad
ho(\phi_0) =
ho_0.$$

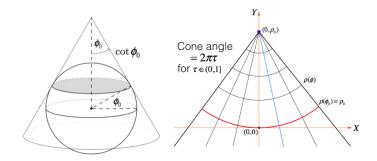
Solving yields

$$\rho(\phi) = \rho_0 \left(\frac{\sec \phi_0 + \tan \phi_0}{\sec \phi + \tan \phi}\right)^{\tau}$$

Still have several parameters to play with: ρ_0, τ, ϕ_0 .

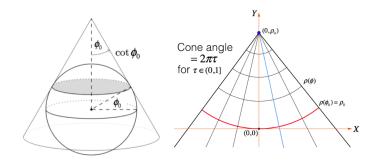


Additional requirements:



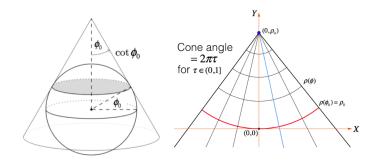
Additional requirements:

 Parallel at latitude φ₀ is a standard parallel, i.e. length is preserved.



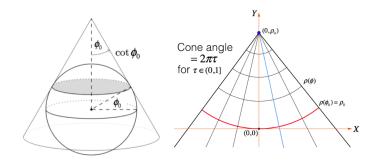
Additional requirements:

• Parallel at latitude ϕ_0 is a standard parallel, i.e. length is preserved. $2\pi \cos \phi_0 = 2\pi \tau \rho_0$, so $\tau = \frac{\cos \phi_0}{\rho_0}$.



Additional requirements:

Parallel at latitude φ₀ is a standard parallel, i.e. length is preserved. 2π cos φ₀ = 2πτρ₀, so τ = cos φ₀/ρ₀.
 Cone tangential to sphere: ρ₀ = cot φ₀.

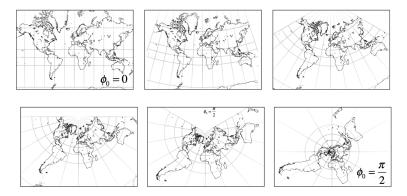


Additional requirements:

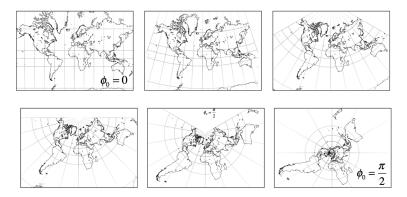
• Parallel at latitude ϕ_0 is a standard parallel, i.e. length is preserved. $2\pi \cos \phi_0 = 2\pi \tau \rho_0$, so $\tau = \frac{\cos \phi_0}{\rho_0}$.

• Cone tangential to sphere: $\rho_0 = \cot \phi_0$.

$$\Rightarrow \quad \rho(\phi) = \cot \phi_0 \left(\frac{\sec \phi_0 + \tan \phi_0}{\sec \phi + \tan \phi} \right)^{\sin \phi_0}.$$

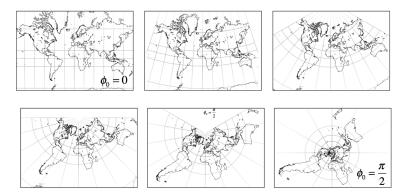


The conic maps Ψ_C have the following limiting cases:



The conic maps Ψ_C have the following limiting cases:

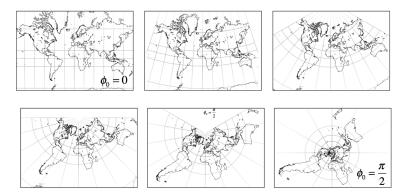
• $\phi_0 \rightarrow 0$: Mercator projection Ψ_M .



The conic maps Ψ_C have the following limiting cases:

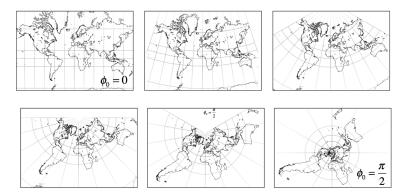
• $\phi_0 \rightarrow 0$: Mercator projection Ψ_M .

•
$$\phi_0 \to \frac{\pi}{2}^-$$
: $\rho(\phi) \to \frac{2}{\sec \phi + \tan \phi}$. Get Ψ_S , rotated $\frac{\pi}{2}$ clockwise.



The conic maps Ψ_C have the following limiting cases:

- $\phi_0 \rightarrow 0$: Mercator projection Ψ_M .
- $\phi_0 \to \frac{\pi}{2}^-$: $\rho(\phi) \to \frac{2}{\sec \phi + \tan \phi}$. Get Ψ_S , rotated $\frac{\pi}{2}$ clockwise.
- $\phi_0 \to -\frac{\pi}{2}^+$: $\rho(\phi) \to -2(\sec \phi + \tan \phi)$. Get Ψ_N , rotated $\frac{\pi}{2}$ clockwise, but then reflected in the X-axis.



The conic maps Ψ_C have the following limiting cases:

- $\phi_0 \rightarrow 0$: Mercator projection Ψ_M .
- $\phi_0 \to \frac{\pi}{2}^-$: $\rho(\phi) \to \frac{2}{\sec \phi + \tan \phi}$. Get Ψ_S , rotated $\frac{\pi}{2}$ clockwise.
- $\phi_0 \rightarrow -\frac{\pi}{2}^+$: $\rho(\phi) \rightarrow -2(\sec \phi + \tan \phi)$. Get Ψ_N , rotated $\frac{\pi}{2}$ clockwise, but then reflected in the X-axis. (Recall: complex conjugation and east \rightsquigarrow west direction was clockwise earlier.)

Q: Given two spaces with some structure, are they equivalent?

Q: Given two spaces with some structure, are they equivalent?

The sphere and the plane are

- geodesically equivalent;
- symplectically equivalent (This refers to "area" in dim 2);
- conformally equivalent.

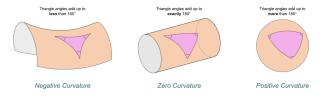
They are *not* metrically equivalent.

Q: Given two spaces with some structure, are they equivalent?

The sphere and the plane are

- geodesically equivalent;
- symplectically equivalent (This refers to "area" in dim 2);
- conformally equivalent.

They are *not* metrically equivalent. Have Gaussian curvature κ that is intrinsic and invariant under isometries ("Theorema Egregium").

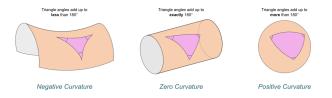


Q: Given two spaces with some structure, are they equivalent?

The sphere and the plane are

- geodesically equivalent;
- symplectically equivalent (This refers to "area" in dim 2);
- conformally equivalent.

They are *not* metrically equivalent. Have Gaussian curvature κ that is intrinsic and invariant under isometries ("Theorema Egregium").



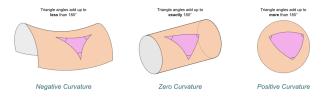
A cylinder is metrically equivalent to the plane (also geodesically, symplectically, conformally), i.e. one has ideal maps for a cylinder.

Q: Given two spaces with some structure, are they equivalent?

The sphere and the plane are

- geodesically equivalent;
- symplectically equivalent (This refers to "area" in dim 2);
- conformally equivalent.

They are *not* metrically equivalent. Have Gaussian curvature κ that is intrinsic and invariant under isometries ("Theorema Egregium").



A cylinder is metrically equivalent to the plane (also geodesically, symplectically, conformally), i.e. one has ideal maps for a cylinder. Higher dim? Different structures? \rightarrow Differential geometry!