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The Mercator projection (1569)

Importance: Navigation.

Conformal map, i.e. angles are preserved.

Here’s a fun little puzzle: Mercator Puzzle
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Rhumb lines

Rhumb line = path of constant compass bearing on the sphere, i.e.
have constant angle with the corresponding parallel & meridian.

7→

parallels of latitude 7→ horizontal lines
meridians of longitude 7→ vertical lines
rhumb lines 7→ straight lines

The last one makes the Mercator map useful for navigation.
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Mercator map formula

For a map Ψ : X = θ, Y = g(φ) , we calculated scale factors:

λp = lim
s→0

L(Ψ(As))

L(As)
= sec(φ), λm = lim

t→0

L(Ψ(Bt))

L(Bt)
= |g ′(φ)|.

Conformality means λp = λm . Requiring g(0) = 0, g ′(φ) > 0,

g ′(φ) = sec(φ) ⇒ g(φ) = ln(secφ+ tanφ).

ΨM :

{
X = θ, −π ≤ θ ≤ π
Y = ln(secφ+ tanφ), −π

2 ≤ φ ≤
π
2

.
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Distortion in the Mercator projection
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Distance along a rhumb line

Q: How can we find the distance along a rhumb line?

Rhumb line 7→ line segment X (t) = at + b,Y (t) = ct + d .

For a path (φ(t), θ(t)), 0 ≤ t ≤ 1 on S2, we saw in Lecture 2 a

formula for its length L =

∫ 1

0

√
(φ′)2 + cos2(φ)(θ′)2dt .

Need φ, θ as functions of X ,Y , i.e. inverse Mercator map Ψ−1
M .
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Inverse of the Mercator map

Given ΨM :

{
X = θ

Y = ln(sec(φ) + tan(φ))
, what is Ψ−1

M ?

Using some trig. trickery... eY = sec(φ) + tan(φ) = 1+sin(φ)
cos(φ) =

1−cos(φ+π
2

)

sin(φ+π
2

) =
2 sin2(φ

2
+π

4
)

2 sin(φ
2

+π
4

) cos(φ
2

+π
4

)
= tan(φ2 + π

4 ). Thus,

Ψ−1
M :

{
θ = X

φ = 2 arctan(eY )− π
2
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Distance along a rhumb line - 2

Ψ−1
M :

{
θ = X

φ = 2 arctan(eY )− π
2

,
Rhumb

line:

{
X (t) = at + b

Y (t) = ct + d

⇒ φ′ =
2eY c

1 + e2Y
, θ′ = a, cos(φ) =

2eY

1 + e2Y
.

L =

∫ 1

0

√
(φ′)2 + cos2(φ)(θ′)2dt =

√
a2 + c2

∫ 1

0

2eY

1 + e2Y
dt

= ... =
2
√
a2 + c2

c
(arctan(ec+d)− arctan(ed)) .

(When c → 0, we recover L = 2ed

1+e2d = cos(φ).) This formula is

valid on the unit sphere S2. On a sphere of radius R, this length
would be rescaled by R.
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Stereographic projection
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Stereographic projection (from north pole)

parallels of latitude 7→ circles centred at 0
meridians of longitude 7→ rays emanating from 0

(Note: Viewed from above, East  West is a clockwise rotation in the map.)
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Geometric construction

On S2, put a light source at the north pole, and cast the shadow
of ~P ∈ S2 onto the plane tangent at the south pole.

Line ~NP intersects z = −1 plane at ~Q: ( 2x
1−z ,

2y
1−z ,−1). Hence,

ΨN : X =
2x

1− z
, Y =

2y

1− z
.
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Polar coordinate formula

Use spherical polar coords (x , y , z) = (cosφ cos θ, cosφ sin θ, sinφ)
to write ΨN .

Then X = 2 cosφ cos θ
1−sinφ , Y = 2 cosφ sin θ

1−sinφ , and

⇒ R =
√
X 2 + Y 2 =

2 cosφ

1− sinφ
=

2 cosφ(1 + sinφ)

1− sin2 φ

ΨN : R = 2(secφ+ tanφ), Θ = θ

Towards north pole, lim
φ→π

2
−
R →∞. (High distortion.)

Towards south pole, lim
φ→−π

2
+
R → 0.
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Stereographic projection is conformal

Halley (1695): Stereographic projection is conformal.

For a map Ψ : R = f (φ), Θ = θ , we calculated scale factors

λp = lim
s→0

L(Ψ(As))

L(As)
= f (φ) sec(φ), λm = lim

t→0

L(Ψ(Bt))

L(Bt)
= |f ′(φ)|.

Conformality means λp = λm . For f (φ) = 2(secφ+ tanφ), we

can verify this is true. (Note f ′(φ) > 0 on (−π
2 ,

π
2 ).)
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Distortion in the stereographic projection
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Circles are mapped to “circles”

Definition

A circle on S2 is the intersection of a plane Π in R3 with S2.
A “circle” in the plane is either an ordinary circle or a line.

Theorem

Any circle on S2 is mapped by ΨN to a “circle” in the plane.
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Stereographic projection is circle preserving

IDEA: Invert ΨN : X = 2x
1−z ,Y = 2y

1−z

to get

P = (x , y , z) =

(
4X

X 2 + Y 2 + 4
,

4Y

X 2 + Y 2 + 4
,
X 2 + Y 2 − 4

X 2 + Y 2 + 4

)
∈ S2.

If P ∈ Π ∩ S2, then ax + by + cz = d . Plug above in to get

4(aX + bY ) + c(X 2 + Y 2 − 4) = d(X 2 + Y 2 + 4)

This is the eqn of a circle if c 6= d and a line if c = d .
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Circles images
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From Mercator to stereographic projection
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A simple complex relationship

Identify the plane with C, i.e. Z = X + iY = Re iΘ and similarly
for tilded variables.

The function F is described in real coordinates as

R̃ = 2eY , Θ̃ = X

Using the complex exponential, we have

Z̃ = R̃e iΘ̃ = 2eY e iX = 2e i(X−iY ) = 2e iZ .
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Complex differentiable functions

Given F : C→ C, define C-differentiability via the usual formula

F ′(a) = lim
h→0

F (a + h)− F (a)

h
.

BUT, this is much stronger than

R-differentiability of F considered as a map R2 → R2.

FACT: When F ′ exists and is nonzero, F is a conformal mapping.

The Mercator-to-stereographic map is conformal and decomposes:
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New conformal maps from old

Given a conformal map Ψ from the sphere to the plane, we can use
a C-differentiable F (with F ′ 6= 0) to produce a new map Ψ̃:

Möbius transformations F (z) = az+b
cz+d form a wonderful class of

C-differentiable (hence conformal) maps. Möbius transformations revealed
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A family of conformal maps

Here’s another way from Mercator to stereographic projection:

The Mercator and stereographic projections, and many in between .
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Conic conformal projections

Lambert (1772): Gave a family of conic conformal map projections
with Mercator and stereographic projections as limiting cases.

Also allow φ0 ∈ [−π
2 , 0), i.e. cone vertex appears below the sphere.

φ0 = −π
2  stereographic projection from the north pole.

Let’s cut open the cone and flatten it. How to specify the map?
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General conic projections

ΨC :

{
X = ρ(φ) sin(τθ)

Y = ρ0 − ρ(φ) cos(τθ)

Meridians: uniformly spaced rays emanating from (0, ρ0).
Thus, θ = 0 meridian is along the Y -axis.

Parallels: Circular arc centred at (0, ρ0) of radius ρ(φ) (for
latitude φ). Pick φ0 such that ρ(φ0) = ρ0.

Require ρ(π2 ) = 0 and ρ′(φ) < 0.
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General conic conformal projections

Under ΨC , meridians and parallels are orthogonal.

Scale factors:

λp = lim
s→0

ρ(φ) s
2π (2πτ)

s cos(φ)
= ρ(φ)τ sec(φ)

λm = lim
t→0

∣∣∣∣ρ(φ+ t)− ρ(φ)

t

∣∣∣∣ = |ρ′(φ)| = −ρ′(φ)

Conformality λp = λm yields the DE:

ρ′(φ) = −ρ(φ)τ sec(φ), ρ(φ0) = ρ0.

Solving yields

ρ(φ) = ρ0

(
secφ0 + tanφ0

secφ+ tanφ

)τ

.

Still have several parameters to play with: ρ0, τ, φ0 .
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Conical maps

Additional requirements:

Parallel at latitude φ0 is a standard parallel, i.e. length is

preserved. 2π cosφ0 = 2πτρ0, so τ = cosφ0
ρ0

.

Cone tangential to sphere: ρ0 = cotφ0 .

⇒ ρ(φ) = cotφ0

(
secφ0 + tanφ0

secφ+ tanφ

)sinφ0

.
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Limiting cases

The conic maps ΨC have the following limiting cases:

φ0 → 0: Mercator projection ΨM .
φ0 → π

2
−: ρ(φ)→ 2

secφ+tanφ . Get ΨS , rotated π
2 clockwise.

φ0 → −π
2

+: ρ(φ)→ −2(secφ+ tanφ). Get ΨN , rotated π
2

clockwise, but then reflected in the X -axis. (Recall: complex
conjugation and east  west direction was clockwise earlier.)
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Broader perspective on these lectures

Q: Given two spaces with some structure, are they equivalent?

The sphere and the plane are

geodesically equivalent;
symplectically equivalent (This refers to “area” in dim 2);
conformally equivalent.

They are not metrically equivalent. Have Gaussian curvature κ that
is intrinsic and invariant under isometries (“Theorema Egregium”).

A cylinder is metrically equivalent to the plane (also geodesically,
symplectically, conformally), i.e. one has ideal maps for a cylinder.

Higher dim? Different structures?  Differential geometry!
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