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All maps must lie
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Great circles

A great circle is the intersection of the sphere with a plane passing
through the sphere’s center. These are geodesics on the sphere.
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Ideal maps

An ideal map (from the sphere to the plane) satisfies all of:

(D) Distances are rescaled by the same constant factor (so the
map is just a scale model of the earth);

(G) All arcs of great circles are mapped to straight line segments
(so distances can be measured with a ruler on the map);

(C) Angles are preserved, i.e. conformal map.

Theorem

Ideal maps do not exist, i.e. “all maps must lie”.

Even stronger:

Theorem

Maps satisfying both (G) and (C) do not exist.

Theorem

Maps satisfying (D) do not exist.
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Spherical triangles

Theorem (Area of a spherical triangle)

Let ∆ABC be a spherical triangle (i.e. edges are great circle arcs)
on a sphere of radius r . If Σ is its internal angle sum, then

0 < Area(∆ABC ) = (Σ− π)r2.

Assume a map satisfies (G) and (C). It must map a spherical
triangle ∆ABC to a planar triangle ∆abc with angle sum Σ > π.

Contradiction! (××××, =, ⇒⇐, E).
Q: Where does the above AST theorem come from?
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Lunes

Lune = portion between two intersecting great circles and the
antipodal points where they cross.
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Understanding the AST theorem

Given a spherical ∆ABC , rotate so that arc AB looks as below.

Have lunes
with areas:

a + t = 2αr2,

b + t = 2βr2,

c + t = 2γr2.

Adding yields: a + b + c + 3t = 2Σr2

Have hemisphere: a + b + c + t = 2πr2

Subtract & ÷2: t = (Σ− π)r2 . ∴ ASTX
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Euler’s proof

Recall (D): Distances are rescaled by the same constant factor λ.

Theorem (Euler, 1775)

No map satisfying (D) exists.

Assume such a map Ψ exists. Pick a point in its domain. Using a
rotation, take this to be the north pole ~N. Pick d > 0 small.
Consider all points at a distance d away from ~N.
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Euler’s proof - 2

length(C ) = 2πr cosφ

= 2πr sin
(π

2
− φ

)
= 2πr sin

(
d

r

)
< 2πd ,

using the fact that sin(x) < x for any x > 0. (Exercise.)

By (D), Ψ(C ) is a planar circle with center Ψ( ~N), radius λd , so
circumf. 2πλd . But length(C ) < 2πd ⇒ length(Ψ(C )) < 2πλd .

Contradiction! (××××, =, ⇒⇐, E).
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The gnomonic projection
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Gnomonic projection

Theorem

This sends (arcs of) great circles to (segments of) lines.
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Great circle arcs map to line segments

Fix a great circle C (not equator).

It lies on a plane E = ~v⊥.

Pick any ~P on C (in southern hemisphere).

Line ~OP lies on E intersects {z = −1} at ~a = (X ,Y ,−1).

Have 0 = ~v · ~a = v1X + v2Y − v3. Since ~v is fixed and
(v1, v2) 6= (0, 0) (E is not equatorial), then this is the eqn of a
line in the XY -plane, i.e. {z = −1}.
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(v1, v2) 6= (0, 0) (E is not equatorial), then this is the eqn of a
line in the XY -plane, i.e. {z = −1}.
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The gnomonic projection

~P :


x = cos(φ) cos(θ)

y = cos(φ) sin(θ)

z = sin(φ)

.
Line ~OP intersects
plane at (X ,Y ,−1) = (− x

z ,−
y
z ,−1).

⇒ X = − cot(φ) cos(θ), Y = − cot(φ) sin(θ). Or, in polar coords:

Ψ : R = − cot(φ), Θ = θ

Can check that f (φ) = − cot(φ) does NOT satisfy the:

conformal condition: f ′(φ) = f (φ) sec(φ);

equi-areal condition: f ′(φ)f (φ) = cos(φ).
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Geodesics in the gnomonic map

Angles aren’t preserved, so this is not a good map for navigation!
(Compass bearing changes along a geodesic.)
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Measuring distances on the sphere
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Length of curves on the sphere

Recall ~P = (x , y , z) = (cos(φ) cos(θ), cos(φ) sin(θ), sin(φ)).

Curve C : ~P(τ), 0 ≤ τ ≤ 1 ⇒ velocity ~P ′(τ), speed |~P ′(τ)|.

length =

∫ 1

0
|~P ′(τ)|dτ =

∫ 1

0

√
φ′(τ)2 + cos2(φ(τ))θ′(τ)2dτ

=

∫
C

√
dφ2 + cos2(φ)dθ2

This dφ2 + cos2(φ)dθ2 is the analogue of the arclength element
squared dx2 + dy2 (from Pythagoras) in the plane.
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Geodesic distance

Take two points ~P, ~Q on a sphere of radius R.

Q: How to measure the distance d along a geodesic joining them?

Let α = angle formed by ~P, ~O, ~Q, where ~O = sphere center. Then

cosα =
~P · ~Q
|~P|| ~Q|

=
~P · ~Q
R2

⇒ d = Rα.

Given the latitude / longitude of any two points, convert into
radians, get ~P, ~Q using the spherical polar coordinate formula. On
the Earth, we need the radius R for this calculation.

Remarkably, the circumference of the Earth (hence R) was
accurately estimated over 2000 years ago!
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Eratosthenes

Eratosthenes (276–194 B.C.):

Need the following ingredients:

1 vertical stick (“gnomon”) 1 camel caravan

Here’s the story:

He heard of a well in Syene, Egypt that on the summer
solstice (June 21) would reflect the overhead sun at local solar
noon, i.e. when the sun is highest in the sky.
Translation: A gnomon there casts no shadow at that time.
He lived in Alexandria, Egypt. There, on June 21 at noon, he
looked down a well and could not see the sun. Using a
gnomon, he measured the shadow and found the angle of
deviation from the vertical = 7.2◦ = 1

50(360◦).
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Circumference of the Earth

Conclusion: The distance d from Alexandria to Syene should
be 1

50 -th of the circumference C of the Earth.

From camel caravans travelling up and down the Nile, it was
known that d = 5000 stadia. Thus, C = 250,000 stadia.

1 stadion = between 157 m & 185 m. Thus, C is between
39,250 km & 46,250 km. (Pretty good! Actual = 40,075 km.)
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MoMS will continue...

MoMS (Mathematics of Maps Seminar) next week:

Thursday, 18 May, 11-12, REALF B302

Equi-areal maps
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