Exercises 1.

- 1. Interpret geometrically the transformation $z \mapsto 2iz 1$.
- 2. Draw the following set of points on the complex line \mathbb{C} :
 - (a) $\operatorname{Re}(z) > 2$.
 - (b) $1 \le |z| < 2$.
 - (c) 1 < Im(z i) < 2.
 - (d) |z 1| < 1.
 - (e) |z-1| < |z+1|.
 - (f) $\operatorname{Re}(z+1) = |z-1|$, use the characterizing property of parabola or rewrite the equation in terms of x, y.
- 3. Use de Moivre's theorem to show

$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta, \cos 3\theta = 4\cos^3 \theta - 3\cos \theta.$$

Derive similar formulas for $\sin 5\theta$, $\cos 5\theta$.

- 4. Calculate all the roots $\sqrt{-3 \pm 4i}$.
- 5. Compare the set of roots:
 - $[(-1)^2]^{1/3}$ and $[(-1)^{1/3}]^2$.
 - $[(-1)^2]^{1/4}$ and $[(-1)^{1/4}]^2$.
- 6. Prove that if the polynomial $P(z) = a_n z^n + \ldots + a_1 z + a_0$ has real coefficients, $a_i \in \mathbb{R}$, and z_1 is a root, then \overline{z}_1 is also a root.
- 7. Find all the roots and the decomposition into polynomials of degree 1 of the following polynomials:
 - $P(z) = z^4 1.$
 - $P(z) = z^4 + 1.$
 - $P(z) = z^4 + 2z^3 + 3z^2 + 2z + 1$, one roots is $z_1 = \frac{-1 + i\sqrt{3}}{2}$.
 - $P(z) = z^3 3z^2 + 3z 2$, one root is $z_1 = 2$.
- 8. Prove that the mapping $z \mapsto w(z) = \frac{az+b}{cz+d}$ with $ad bc \neq 0$ is a bijection between $\mathbb{C} \setminus \{-d/c\}$ and $\mathbb{C} \setminus \{a/c\}$. Show that the map transforms circles to circles.