Exercises 1.

1. Interpret geometrically the transformation $z \mapsto 2 i z-1$.
2. Draw the following set of points on the complex line \mathbb{C} :
(a) $\operatorname{Re}(z)>2$.
(b) $1 \leq|z|<2$.
(c) $1<\operatorname{Im}(z-i)<2$.
(d) $|z-1| \leq 1$.
(e) $|z-1|<|z+1|$.
(f) $\operatorname{Re}(z+1)=|z-1|$, use the characterizing property of parabola or rewrite the equation in terms of x, y.
3. Use de Moivre's theorem to show

$$
\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta, \cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta
$$

Derive similar formulas for $\sin 5 \theta, \cos 5 \theta$.
4. Calculate all the roots $\sqrt{-3 \pm 4 i}$.
5. Compare the set of roots:

- $\left[(-1)^{2}\right]^{1 / 3}$ and $\left[(-1)^{1 / 3}\right]^{2}$.
- $\left[(-1)^{2}\right]^{1 / 4}$ and $\left[(-1)^{1 / 4}\right]^{2}$.

6. Prove that if the polynomial $P(z)=a_{n} z^{n}+\ldots+a_{1} z+a_{0}$ has real coefficients, $a_{i} \in \mathbb{R}$, and z_{1} is a root, then \bar{z}_{1} is also a root.
7. Find all the roots and the decomposition into polinomials of degree 1 of the following polynomials:

- $P(z)=z^{4}-1$.
- $P(z)=z^{4}+1$.
- $P(z)=z^{4}+2 z^{3}+3 z^{2}+2 z+1$, one roots is $z_{1}=\frac{-1+i \sqrt{3}}{2}$.
- $P(z)=z^{3}-3 z^{2}+3 z-2$, one root is $z_{1}=2$.

8. Prove that the mapping $z \mapsto w(z)=\frac{a z+b}{c z+d}$ with $a d-b c \neq 0$ is a bijection between $\mathbb{C} \backslash\{-d / c\}$ and $\mathbb{C} \backslash\{a / c\}$. Show that the map transforms circles to circles.
