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Mat-2300: Exam 2015

Date: 22.05.2015

Theory

. What is an equivalence relation on a set S7

What is a binary operation on a set S? Which binary opera-
tions are called isomorphic?

What is a group? What is a subgroup? Give examples.
Generators of a group. Cyclic groups and their structure.
Homomorphisms and isomorphisms of groups. Kernel, image.
Permutation group, its subgroups and Caley’s theorem.

Cosets (left and right) of a group by a subgroup and Lagrange’s
theorem.

Normal subgroups and factor-groups. Fundamental homomor-
phisms theorem.

. Structure of finitely generated Abelian groups.
10.
11.

Simple groups. Center and commutator of a group.
What is a ring? Define commutative rings, rings with units.

Define division rings, integral domains, fields. What is the
characteristic of a field?

Multiplicative group of a field. Its structure.

Homomorphisms and isomorphisms of rings. Kernel, image.
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The field of quotient of an integral domain. Definition and
construction.

Ring of polynomials with coefficients in a field: F|x]. Degree.
Evaluation homomorphism.

Factorization of polynomials from Flz]|. Irreducible and re-
ducible polynomials.

Ideals in rings. Factor-rings. Fundamental homomorphisms
theorem.

Prime ideals and maximal ideals. Quotients by them. Prime
fields.

Field extensions. Kronecker’s theorem. Algebraic and tran-
scendental elements. Degree of an element.

What is a vector space over a field? Define degree of a field
extension [E : F]. Relation between deg(w, F') and [F(w) : F.

Finite field extensions, algebraic extensions and simple field
extensions.

Existence of algebraic closure. Structure of Galois fields G F'(p").
Structure of the algebraic closures Q and Z,.

Principal ideal domains, unique factorization domains and re-
lations between them.

Exercises

. Let G be a group and a,b € G commute: ab = ba. Denote m =

ord(a),n = ord(b). Assume that these numbers are finite and
that (a) N (b) = {e}. Prove that the order ord(ab) = lem(m,n)
is the least common multiple of the orders of a, b.

. Find all cyclic subgroups of the group Dj,.
. Find parity of the permutation (13572)(2461) € S; and decom-

pose it into a product of cycles.



10.

11.

12.

13.

14.

15.
16.
17.

. Find the maximal order of an element of S, for n = 6,7, 8.

. Does S; contain a normal subgroup of index 5?7 Does S5 con-

tains a normal subgroup of index 47

. Is it true that Ag ~ Zg? That Z4 >~ Zg X ZQ, 53 ~ ZQ X Z37

That A4 ~ Z% X Zg or Z5 X Z4? That Zlg ~ Z% X Zg? (EXplam)

. Find the number of generators for the Abelian group (Z,, +)

for n =7,8,9,10. What is the formula for general n?

. Prove that if G C S, is a subgroup of order ord(G) > 2, then

H =GN A, is a non-trivial subgroup in .S,,.

. Let (R, +,-) be afield and ¢ : (R, +) — (R, +) an isomorphism

of the additive group structure. Define the new multiplication
by axb = ¢"1(¢(a) - #(b)). Show that (R,+,*) is a field with
unity 1, = ¢~(1) and ¢ is an isomorphism from it to (R, +,-).

Compute the multiplication table for the field (Zs,+,*) ob-
tained from the standard field structure of Zs as above via the
additive isomorphism ¢ : Zs — Z; given by ¢(1) = 2.

Consider the ring Z% = {f : Z,, — Z,} of Z,-valued functions
on Z, with the pointwise addition/multiplication operations.
Show that it is isomorphic to the ring (Z,)" = Z, X -+ X Zy,
(n times) via the map ¢ : ZZ» — (Z,)™

¢(f) = (f(0), fF(1),..., f(n—1)).

Consider the quadratic polynomial P,(z) = 2* — a. Find for
which a it is irreducible over the fields Zo, Zs, Zs, 7.

Prove that for any prime p > 2 there are exactly ’%1 irreducible
polynomials among P,(z) = z* — a over Z,,.

Let p be prime. Prove that P(x) = aP — z is completely re-
ducible over Z, (decomposes into linear factors).

Let w € C. Find deg(w,R) and deg(w, C).
Let w = e™/" for n = 2,3,4,5,6. Find deg(w, Q).
Find deg(e, Q), deg(e?, Q) and deg(e’, Q).
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For the fields FF = Q,R, C check if w is algebraic over F' and

find irr(w, F') (if yes) and deg(w, F') for the following numbers:

w:‘/75—1—%;wzcos%’r—i—z’sin%”;w:cosl—i—isinl.

Let E be the minimal field extension of Q containing all roots of
the equations 2™ = n for n,m € N. Find dimg £ and dimg R.

Let R = F(z) be the field of rational functions with coefficients
in F'. Show that it is a field extension of F' and find deg(z, F).

Let P € F[z] be an irreducible polynomial and E = F[z]/P
the field extension. What is deg(z, F') here?

Describe explicitly the field GF(n) for 1 < n < 10.

Find whether the following is true or false:

7y CGF(3)? @ Zy C GF(23)? ¢ GF(2%) C GF(24)?

e GF(2%) C GF(2Y)? ¢ GF(3) C GF(2%)? @ GF(23) C Zy?
Find all units for the rings Z, Zs, Z12, Q and also Z[z], R[z].
Is Z[z,y] a PID? Is it a UFD? Is it Noetherian?



